

www.is.s.u-tokyo.ac.jp

未来の情報科学を創造する

教科「情報」が、2025年1月に実施される大学入学共通テストの出題科目に入ることとなった。 情報に関する教育を初頭・中等教育で受けた新世代は、そのとき情報科学で切り拓く夢をどう 描けるだろうか?

私の世代は、40年ほど前に大学の情報教育でこれから消えていく技術にも触れろと、カードを パンチして、カードリーダにかける経験もした。そのカードなんとかは、今の大学生にはもはや 想像もできないものだろう。その頃の私には、半世紀弱ののちにスマホでオンライン授業を受け たり、海外とリアルタイムで会議したりということを想像できなかった。

もはや情報技術は日常生活でも当たり前のもの、全学部の学生がデータサイエンスを教わる時代になっている。そこから30年弱後の2050年なり、半世紀後を思い描くのは本当に難しい。

「目の前の情報技術に満足していますか?」という問いを、情報科学科では近年、若い方へ 投げかけている。満足していないなら、将来の情報科学を創造することを目標に、ぜひ情報科学 科で学んでほしいと。ちなみに、もし満足しているのなら、いちど情報科学の研究の歴史をたどっ てほしい。過去を知らなければ未来も語れないだろう。

ここ10年ほどの情報科学の発展では、人間の神経細胞の仕組みにヒントを得た深層学習が 顕著な貢献をしている。翻訳や自動運転がある程度実用で役にたつようになり、コンピュータ 操作はスマートに、囲碁では世界チャンピオンに勝てるレベルになった。深層学習の高速化と 省電力への渇望が、AIチップの開発につながった。

深層学習の根源の理論は半世紀以上前の3層ニューラルネットだが、そこに神経回路網の 数理によって大きな貢献をした研究者から、本学の学生は学部時代から教わることができた。 時代を経たいま、まさに深層学習の基礎理論から先に挙げた応用までを開拓している研究者 たちがこの学科で直接教えている。

私が進んだ「計算の難しさ」の理論では、半世紀前、2人の計算手が対話して協調計算するというモデルが考えられ、その対話の量から計算の難しさを解析する方法が編みだされた。この理論は情報科学の多方面に貢献したが、今世紀にはいっても新世代の研究者によって研究が積み上げられ、最近では量子コンピュータの能力解析で新たな計算不能問題を証明するという飛躍があった。

このように、温故知新といった様子で何十年も前のアイディアからたびたびブレークスルーが 起きてきた。その一方で、若い方がまったく新しい問題を創造してもいる。いずれにしても、人間は 自らの手で未来を創ってきた。

情報科学を創造するために情報科学科の研究者が何をしているか、この冊子から読み取っていただきたい。そして、今を超える情報科学の世界を開拓していただきたい。

情報科学科では、確立されている基礎理論から多方面に発展したシステムまでを修め、新たな 創造につながる卒業研究に着手する。研究をさらに深めようという方は、大学院のコンピュータ 科学専攻で極めることもできる。

今井 浩

目 次

カリキュラムと学習のながれ	4
時間割と進学に必要な履修科目	6
すこし長いFAQ	7
これから2年間、なにを学ぶのか?	
■ 講義・実験・演習をぐるりと紹介	8
■ プロセッサ・コンパイラ実験(CPU実験) 一ほんとうのコンピュータ自作	10
研究ってどんなものだろう?	
演習Ⅲ一研究室めぐりから卒論への道	12
卒業後の進路	14
青報科学科の研究室紹介	16
■ 須田研究室	18
■ 小林研究室	19
■ 今井研究室	20
■ 五十嵐研究室	21
■ 宮尾研究室	22
■ 谷中研究室	23
■ 杉山·石田研究室	24
■ 佐藤研究室	26
■ 横矢研究室	27
■ 吉本研究室	28
■加藤研究室	29
■高前田研究室	30

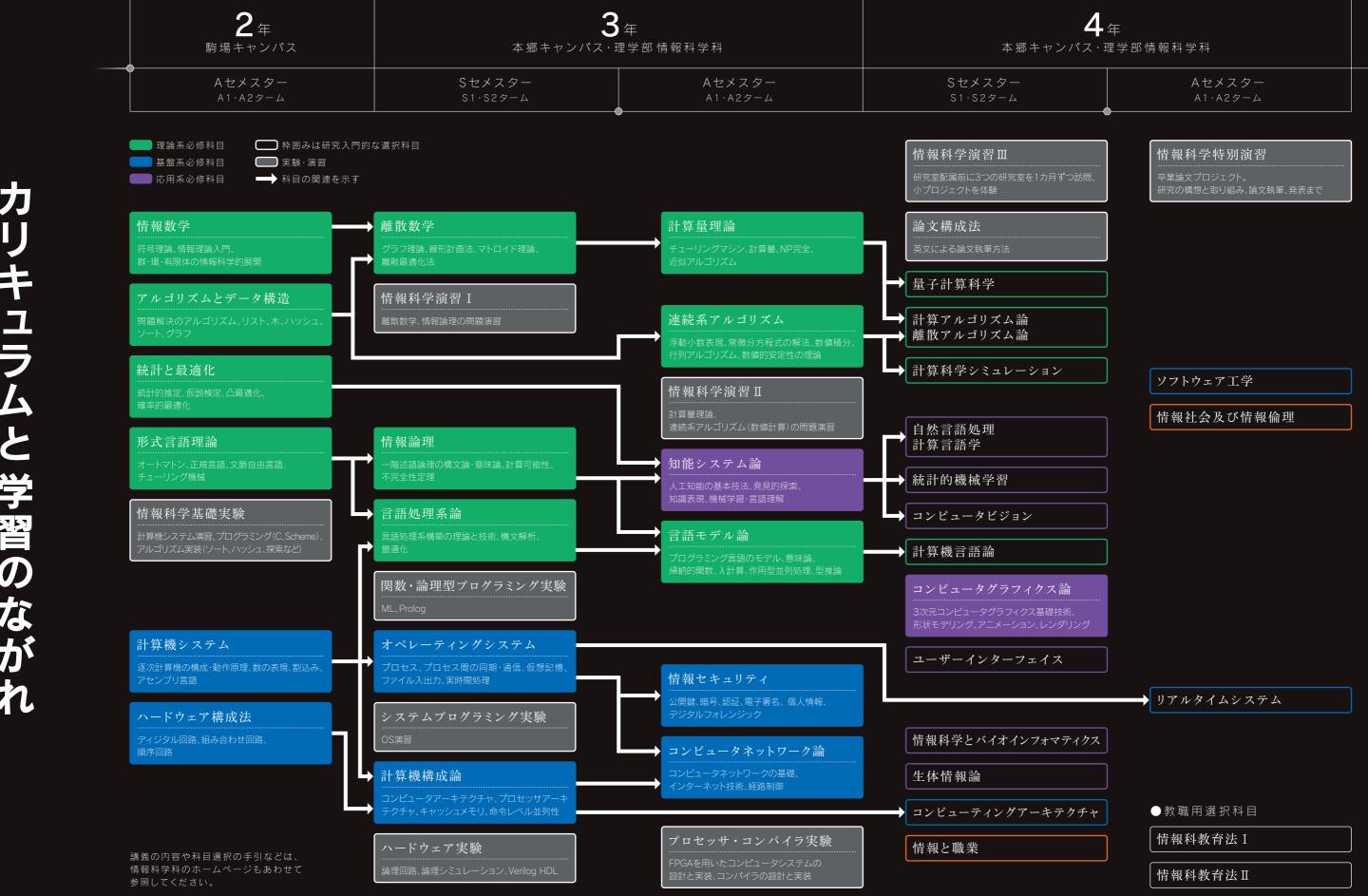
[カバー]チューリング機械と、情報科学科の通称「IS」を重ね合わせた。チューリング機械は、計算を説明する模型のひとつ。単純な規則に従ってテープ上の文字を読み書きする。あらゆる計算を1台の機械で模倣できるという万能性が、現代の計算機の理論的基礎をなしている。

□写真 三浦 健

□文 池野 俊一朗/所司 翼/上田 亮/谷田 直輝/山田 允/村上 直輝/筒井 政成 □デザイン 株式会社ライズ・イメージ・ファクトリー

2022年4月発行

東京大学理学部情報科学科


〒113-8656 文京区本郷 7-3-1 理学部7号館 http://www.is.s.u-tokyo.ac.jp 03-5841-4111~4112

情報科学の基本原理と応用における基礎能力を身に付ける。 実験を通して、ソフトウェアおよびプロセッサの構築法を体得する。

研究最先端への入門。 自身の研究を方向付ける。

研究室へ配属。 卒業研究を行い、論文にまとめる。

時間割と進学に必要な履修科目

授業の時間割

●3年Sセメスター(S1·S2)			──…必修科目 …実騎	於·演習(必修) ■…選択	必修科目選択科目
	月曜日	火曜日	水曜日	木曜日	金曜日
1限 8:30~10:15					
2限 10:25~12:10	オペレーティングシステム	離散数学	情報論理	言語処理系論	計算機構成論
3限 13:00~14:45	システム	関数•論理型		ハードウェア実験	情報科学演習丨
4限 14:55~16:40	プログラミング実験	プログラミング実験		ハートフェア夫談	

●3年Aセメスター(A1·A2)

5限 16:50~18:35

情報科教育法 I

	月曜日	火曜日	水曜日	木曜日	金曜日
1限 8:30~10:15		情報科教育法Ⅱ			
2限 10:25~12:10	言語モデル論	計算量理論	All コンピュータネットワーク論	知能システム論	
3限 13:00~14:45					情報科学演習Ⅱ
4限 14:55~16:40	連続系アルゴリズム	プロセッサ・ コンパイラ実験	情報社会及び情報倫理	ノロセッサ・ コンパイラ実験	
5限 16:50~18:35				コンハイン大阪	A2 情報セキュリティ

●4年Sセメスター(S1·S2)

	月曜日	火曜日	水曜日	木曜日	金曜日
1限 8:30~10:15					
2限 10:25~12:10	S1 自然言語処理 S2 ユーザーインターフェイス	生体情報論	統計的機械学習	コンピュータグラフィクス論	S1 計算アルゴリズム論 S2 離散アルゴリズム論
3限 13:00~14:45	S1 計算機言語論 S2 計算言語学	情報科学とバイオインフォマティクス			82量子計算科学
4限 14:55~16:40		S1 コンピュータビジョン	論文構成法		S1 計算科学シミュレーション S2 コンピューティングアーキテクチャ
5限 16:50~18:35	情報科教育法 I				
6限 18:45~20:30		情報と職業			

●4年Aセメスター(A1·A2)

	月曜日	火曜日	水曜日	木曜日	金曜日
1限 8:30~10:15		情報科教育法			
2限 10:25~12:10					
3限 13:00~14:45	AII リアルタイムシステム				
4限 14:55~16:40	All ソフトウェア工学		情報社会及び情報倫理		
5限 16:50~18:35					

進学に必要な履修科目(2022年度進学生)

●必修科目

科目番号	科目	単位			
0510001	情報数学	2			
0510002	形式言語理論	2			
0510003	計算機システム	2			
0510006	ハードウェア構成法	2			
0510007	アルゴリズムとデータ構造	2			
0510008	情報科学基礎実験	2			
0510009	統計と最適化	2			

●選択科目

科目番号	科目	単位
0505001	代数と幾何	4
0505007	代数と幾何演習	2
0505003	集合と位相	4
0505008	集合と位相演習	2
0505005	複素解析学I	4
0505009	複素解析学l演習	2
0515007	物理数学I	2
0515009	電磁気学Ⅰ	2
0515076	物理数学Ⅱ	2
0560501	生物情報学基礎論Ⅰ	2
0560502	生物情報学基礎論Ⅱ	2

教養学部第2学年に左の必修7科目(合計14単位)、ならびに選択科目から4単位以上を学修してください。ただし、これ以外の選択科目(理学部他学科あるいは他学部の第2学年専門科目)を学修している場合でも、所定の期日までに科目認定届を提出し、学科会議の承認を得られれば、選択科目として認められることがあります。

また、4学年での情報科学特別演習の履修のためには、第2学年専門科目での必修科目14単位のうち12単位以上をあらかじめ取得しておくことが必要です。

すこし長いFAQ

よく寄せられる情報科学科への問合せにお答えします。

工学部の情報系の学科との 違いは何ですか?

理学部のココロとして、「ものごとを根源からとらえる」ということがあります。またその結果、それまでにない、まだ世の中に普及していない題材を扱うこともあるので、ものをイチから作れる力が大切になってきます。

情報科学科では、コンピュータ分野の先端的な研究を手がけていますが、その前提となるコンピュータの原理や理論的な背景を知り、ものごとを抽象化してとらえる力、また何もないところからモノを作れるだけの技術力を付けることを重視しています。

土台の部分から勉強することは、一見回 り道のように思えるかもしれません。けれど も、卒業後にどの分野に進んだとしても、こ の基礎体力が必ず役立つはずです。

プログラミング経験がないと 進学できないでしょうか?

なんらかのプログラミング経験から情報 科学に興味を持って進学する方もあります が、3分の1程度は情報科学科で初めてプログラミングを学んでいます。きちんと指導 しますから安心してください。3年生の実験 では、自分で工夫して作ったものが動くという、プログラミングの面白さを味わえます (課題→p.8)。アルゴリズムを考えるのが好きなら、すぐにとけこめるでしょう。自分で考えたり作ったりするのが好きでないと、苦労するかもしれません。

情報科学科の 「実験」とは何ですか?

たとえば物理の実験では、X線や電気、 レーザーなどの特性を体感的につかめるように課題が出され、検証結果を提出したり します。情報科学科では、3年生の2つの実験を通じて、コンピュータの原理を奥底から理解します。

Sセメスターの『システムプログラミング 実験』は、馴染みのあるソフトウェアを自分で 作ってみるもので、課題に対する解法を考 えて設計・プログラミングします(課題→p.8)。

Aセメスターの『プロセッサ・コンパイラ実験』は、与えられたコンピュータグラフィックスのプログラムが動作するように、CPU、コンパイラ、ツールを設計・開発するもの。どのようなCPUやソフトウェアを作るかを考えることから始まります(CPU実験→p.10)。

所定の結果になることを追実験するのではなく、問題の設定・設計を自分で考えるクリエイティブな要素があり、実験結果が十人十色になるのが面白いところです。実験から、思わぬ発展に結びつくこともあります。

1限の授業がないので ビックリしました

情報科学科は、結果と使う時間の配分を自分でデザインする、自由な雰囲気の学科です。1限の時間を課題や自分の勉強に使う人も、休養に充てる人もいます。また、選択する分野にもよりますが、4年生に進んでからの研究題材も自由です。学科内で

は、個人が多様性のある活動をしつつも、 ワークスペースなどでよく協調している光 景が見られます。少人数教育の学科なの で、このような運営が可能になっています。

1限の授業がなくて驚かれる方もいますが、決して「ゆるい」わけではありません。

数学と情報科学の関連性について 教えてください

コンピュータは数学や論理学と密接な つながりをもって発展してきました。情報科 学科では、情報論理、コンピュータのさまざ まな部分で応用されている離散的な理論 分野、計算量理論に力をいれています。

地図の塗り分け問題がレジスタ(CPU内にある数値を格納するための回路)割り当てやプリント基板の配線検査時間の短縮に使われていることをご存じの方もあるでしょう。グラフを考えれば、地図の問題がレジスタやほかのいろいろな問題に結びついて解けるのが面白いところです。

ものごとにどのような複雑性があり、どういう問題に帰着するかは、モノづくりに限らず直感的に知っていないといけない知識ですが、これらは計算量理論で身に付けることができます。

現在の知能システムを支える機械学習では、データを数理モデルによって抽象化する過程で、線形代数、関数解析、確率統計などを縦横無尽に使います。

また天気予報に使われる物理シミュ レーションでは、微分積分の数値計算を 効率良く行うアルゴリズムが使われます。

コンピュータってこんなふうにできていたんだ!) 講義・実験・演習をぐるりと紹介

これから2年間、 何を学ぶのか?

情報科学科では、ハードウェアのような基盤層からアプリケーションのような上位 層まで、講義で理論や動作原理、設計思想を学び、実験で実際に作ってみることに より、コンピュータシステムの全体像を深く理解できるようになっています。ここでは、 実験科目とそこで作成するプログラムの一部を紹介します。日ごろ使っているコン ピュータシステムは、いったいどのような仕組みで動いているのでしょうか。

ハードウェア

「ハードウェア実験」や「CPU実験」で は、CPUを始めとするハードウェアを自分 の手で設計し、その仕組みを学びます。電 子回路に触れ、加算器や簡単なCPUを制 作し、最終的にはチームでCPUを設計・制 作します。チーム対抗で速さを競い合うの が慣例になっています。

OS・基礎ソフトウェア

コンピュータにおけるOSの役目は、アプ リケーションがハードウェア資源を効率よ く使えるようにすること。OSの授業では、 多数のアプリケーションを同時に動かす ためのCPUスケジューリング、メモリの仮 想化などを学びます。

「システムプログラミング実験」の前半 では、システムコールという仕組みでOS の中核機能を直接呼び出し、マルチスレッ ドプログラミングや、ソケット通信を体験、 最後にシェルを作成します。シェルという のは、ユーザーのコマンド入力からOSに プログラムを実行させる、ユーザーとOS の間を仲介するプログラムです。一見簡単 そうに思えますが、実際に作ってみるとさ まざまな困難に直面します。問題をクラス メートと協力しながら解決し、OSに対する 理解を深めていきます。

実験後半では、OSのない環境でハード ウェアを直接制御し、簡単なOSを作るこ とを目指しベアメタルプログラミングを行 います。シェルの作成よりもさらにたいへ んですが、ハードウェアの力を引き出す用 途にも役立てられます。

言語処理系論・コンパイラ実験

プログラムをコンピュータ上で実行する ためには、コンパイラという翻訳プログラ ムによりCPUの命令(機械語)へ変換する 必要があります。「言語処理系論」の講義 では、そんなコンパイラを構築するための 理論や技術について学びます。

実験では、OCamlという関数型プログ ラミング言語を用いて実際にコンパイラを 自分の手で作成、その仕組みを深く理解し ます。また、ただプログラムを各自で定義 した機械語に翻訳するだけではなく、各種 の最適化手法を採り入れて翻訳後の機械 語コードが高速に動作するよう改良して いきます。チームメートと実行命令数や実 行時間を競い合うのも楽しみです。

数值計算

現代の物理学を支える物理シミュレー

ションは、微分方程式に従う連続量の数値 計算によって実現しています。数学的には 解くことが難しい微分方程式も、コン ピュータで計算を繰り返すことで近似的に 計算が可能になります。講義では誤差が広 がらないように上手く計算するためのアル ゴリズムを学び、演習で常微分方程式に対 するRunge-Kutta法などを実装します。

演習では高速化を目指し、プロセス間通 信やGPUを活用して、並列計算にも挑み ます。並列計算は計算量が増す一方の現 代に必要不可欠ながら、専門課程までは 触れる機会の少ない分野です。並列計算 の工夫によって性能が大きく向上していく さま、またその実現の難しさを実感できる 演習は刺激的です。

知能システム

「人工知能とは何か?」という問いから 始まり、数理最適化や統計的機械学習、強 化学習、言語処理、そして近年注目を集め ているニューラルネットワークなど、人工 知能に関する基礎的な手法を学びます。 講義で理論や什組みを学んだあと、実際 に自分の手で手法を実装して動かし、さら に理解を深めます。知能のモデル化という のは簡単にできるものではなく、知能とは 何なのかを改めて考えさせられます。

ユーザーインターフェイス

ユーザーインターフェースは、「コン ピュータを人間が使用する」ことに焦点を 当てた分野です。目的を簡単に・効率的 に・気持ちよく達成するため、ソフトウェア は機能だけでなく人間の操作性(インター フェース)を工夫する必要があります。

授業では、コンピュータグラフィックス や機械学習などのテーマを取り上げ、直感 的な操作を実現するためのインター フェースが紹介されます。また、毎週の講 義内容に関連して、「表情を付けた自動運 転車」の性能を評価する実験計画の考案、 新しい素材の3Dプリントの考案など、面 白い練習課題が与えられます。

最終課題は、ウェブ上のアプリケーショ ンを工夫して実装し、実際に使ってもらう プロジェクト。思ったように使ってもらえな い様子を見るのは新鮮で、良い経験です。

離散数学

離散数学は、文字通り離散的な(連続で ない)対象を扱う数学です。離散数学には 順列や組合せを網羅的に調べることで解 ける問題があり、解くのにコンピュータを 使用できますが、その解法を高効率にする 研究が重要です。例えば「都市の集合と各

2都市間の距離が与えられたとき、すべて の都市を1回ずつ巡り出発地に戻るルー トのうち、総移動距離が最小になるものを 求める」という巡回セールスマン問題を考 えてみましょう。もちろん全ルートを探索 すれば答えがわかりますが、それでは(都 市数-1)!個のルートを調べる必要があり、 都市数が多いとコンピュータを使っても 現実的な時間で解くのは難しくなります。 実は都市数の多項式時間で解けるアルゴ リズムは発見されておらず、近似的に解を

演習では、基礎的な問題から発展的な 問題まで用意され、複数のメンバーで相 談・議論しながらひとつの答案を作ること もしばしばです。また答案を発表する機会 もあり、教員やクラスメートから質問を受 けることも。根本的な理解が求められます。

得る方法が知られています。

実験と課題でコンピュータをまるごと作って理解する

情報交換の場となっている ワークスペース

情報科学科の学生にはノートPCが貸 し出され、そのPCを使用して実験のプロ グラムなどを作成します。課題は、大学内 などに限らず、好きな場所で。

学科内には学生用の控室が用意され、 研究室配属前の学生も自分の席を持てま す。コロナ禍の影響により一時閉鎖されて いましたが、内装を新しくして再び利用で きるようになりました。このワークスペース の存在意義は大きく、課題の情報交換や 共同作業の場になっています。

プログラムの作成では、似たような問題 点で行き詰まることが多く、情報交換の効 果は絶大です。TAや先輩が様子を見に来 て、指導してくれることもあります。比較的 自由な雰囲気で、課題を片付けてボード ゲームを楽しむ光景も見られます。

(2022年4月 池野 俊一朗·所司 翼·上田 亮)

仕組みを知る早道は作ってみること)プロセッサ・コンパイラ実験

CPU実験 ― ほんとうの コンピュータ自作

3学年のAセメスターになると、『プロセッサ・コンパイラ実験』——通称「CPU実験」が始まり、 3~4人の各チームに、FPGA基板と道具がいくつか渡されます。ミッションは「半年かけてで きるだけ速いコンピュータを作れ」。それから翌年3月の発表会までに、課題のCGプログラム が動くよう、独自のCPUやコンパイラなどをイチから設計・製作します。ハードなものの、 OB・OGの誰もが「楽しかった」と口を揃えるこの実験の様子を、紹介しましょう。

実験は、まずCPUの命令セット/アーキ テクチャの設計から始め、CPU、コンパイ ラ、アセンブラやシミュレータを分担して 実装、というふうに進みます。

みんなでアーキテクトになる

最初に、CPUの命令セット——CPUが 備える命令群などのアーキテクチャを決 めます。複雑な仕様にすると完成させるの が難しくなるので、最初は既存のCPU アーキテクチャを参考に、シンプルな設計 から始めることが多いようです。CPUの実 装のしやすさと、コンパイラの開発のしや すさは、往々にして相容れないもの。うまく そのバランスをとることがたいせつです。

仕様が固まると、各自の興味・得意不得 意を考慮して分担を決め、開発にとりかか ります。実は、技術的な知識だけでなく、

半年にわたるプロジェクトワークもたいへ ん貴重な経験になります。

CPUを詳細に設計する

回路が大規模になった現在、論理回路 の実装は、回路図上でゲートを配線する代 わり、HDL(ハードウェア記述言語)を用い るのが主流です。HDLはプログラミング言 語に似ていて、回路の動作を詳細に記述で きます。このHDLの記述を、FPGA用の開 発ツールを使って回路に合成し、FPGA内 に自動配置・配線します。しかし、開発ツー ルが最適の合成と配置を約束してくれる わけではありません。思い通りの回路にな るように、開発ツールの動作を見越して HDLを書くのも腕の見せどころ。設計した 論理回路は、開発ツールのHDLシミュレー 夕で表示される波形図で検証します。

コンパイラを開発する

課題のCGプログラムは、MLというプロ グラミング言語で書かれているので、その コンパイラが必要です。最近はMLで実装 された洗練されたMLコンパイラがあるの で、これを改造してまず動作させ、より効率 の良い命令列を生成するように改良するこ とが多いようです。既存の最適化手法も採 り入れますが、やはり、自分たちのCPUに合 わせた独自の方法を試行錯誤することにな ります。三角関数のような一般的な関数も、 コンパイラとともに用意します。

ツールいろいろ

CPUが動作しだすまで、ソフトウェア係 は何もしないのでしょうか? いいえ。 CPUと並行して、CPUシミュレータなどの

モジュールごとにHDLで記述した回路をつなぎ合わ

HDLシミュレータが表示する波形図で、設計した論 FPGAに論理回路のデータを送り込んでテストする。

ツールも自作します。ツールが設計した命 令セットの振る舞いを疑似的に再現してく れるおかげで、コンパイラが生成した命令 列を検証したり、実行時間を予測してアー キテクチャを改良したりすることが可能に なります。命令の取捨選択のために命令 の使用頻度を調べたり、パラメータを変更 して実行するためにも使われます。

テスト

ひととおり出来上がると、実際にFPGA に回路のデータを送り込んでテストしま す。一見うまく動いているようでも、不具合 や仕様の解釈違いはあるもので、ここから 完成までは思いのほか長くかかります。 作ったものが思いどおりに動作しないとき には、ロジックアナライザで調べることも あります。

ついに、課題プログラムが動き、CGが 描画される日がやってきます。でも、これで おしまいではありません。スピードコンテ ストに向けたここからの高速化が、CPU実 験の最も楽しいところです。性能の記録更 新を狙って、何度か設計しなおし、シンプ ルで周波数が高いもの、特別な命令や複 雑な機構を採用したものと、既存の枠にと らわれないアーキテクチャを工夫します。

過去の例では、パイプライン、レジスタ フォワーディング、VLIW、スーパースカ ラ、キャッシュ、分岐予測、スクラッチパッ ドメモリなどが導入されました(興味のあ る人はぜひWebなどで調べてみてくださ い)。課題プログラムを徹底的に解析して コンパイラを最適化したりもします。作っ たコンピュータがどんどん速くなっていく

のは、とても気分の良いものです。

CPUの実装に使用するFPGA評価ボード

CPUにはFPGA(電気的な方法で内部のロジックを自由にデザイン して書き換えられるLSI)を使用する。写真中央の冷却ファンの下に

は、600万ゲート規模の回路を実装可能なFPGAがある。周りに、

メモリ(DDR4)、電源を供給したりFPGAに論理回路を送りこむた

めに使用するUSBなどの入出力コネクタが備えられている。

発表会には、院生なども大勢訪れます。 それぞれのチームが半年かけて練った自 分たちのアーキテクチャやコンパイラを熱 く語り、無事に完成したチームは実際に CPUを実行させてデモを行います。

年々更新されていく記録には、先輩から 継承されたノウハウが数値となって表れて います。2016年にFPGAの規模が拡大し てからは、マルチコアを実装して並列計算 で高速化を図るチームも現れました。例 年、発表会ではCPUを完動させたあとの 「余興」として、さらに踏み込んだ挑戦が誇 らしげに披露されます。自作のOSとシェル を動かす、コンパイラの最適化のために LLVMバックエンドを作成する、などが近 年の例です。そこまで熱くなれるのがCPU 実験です。

(2009年3月 谷田 直輝・2020年3月 山田 允更新)

課題プログラムは例年レイトレーシングによる CG。TRONに登場する車が表示される。

現するため、コンパイラの 開発はイバラの道に…… 仮想メモリやマルチタスク のOSを動かすためには、 CPUにさらにMMU(メモ リ管理機構)、割り込み機 構、特権管理機構を作り込 まなければならない。

研究ってどんなものだろう?)自分で選んだ課題に取り組む

演習Ⅲ──研究室めぐりから 卒論への道

情報科学にはいろいろな分野があり、それぞれ広範な隣接分野へとつながっています。 多くの人がそのどの分野に進むかを迷い、興味を持っている分野の感触を知りたいと 思っているでしょう。ならば、いくつか実際に体験してみようという制度があります。

演習Ⅲという独特のシステム

4年生は、Aセメスターにはいると研究 室に配属され、自分で選んだテーマを研究 し、得られた知見を卒業論文にまとめま す。とはいえ、どの分野を選ぶか、どの研究 室が合っているかは多くの人が迷い、悩む ところでしょう。そして、これから進むこと になる研究室では、いったいどんな生活が 待っているのでしょうか?

情報科学科では、情報科学演習 III (以降 では演習Ⅲ)という独自の制度があり、 研究室に配属される前に、3つの研究室を 1カ月ずつ訪問し、それぞれで課題に取り 組みます。この過程を通して、情報科学の 異なる分野を体験し、卒論や大学院に向 けて自分に合った分野を見つけることがで きます。

4年Sセメスター:

4月になると、分野・研究室を紹介するガ イダンスが開かれ、それを参考にして希望 する研究室を6つまで提出します。4月上旬 には、訪問先の3つの研究室が決まり、4月 中旬から1カ月間ずつ仮配属されます。

研究室で取り組む課題は、それまでの 授業のように一方的に出題されるわけで はありません。用意されている選択肢のな

かから自分でテーマを選び、1カ月をかけ て取り組みます。

4年Aセメスター:

9月になると、配属先の研究室が決定し、 早ければ9月中から研究室のミーティング に参加するようになります。研究室では、担 当教員の指導を受けながら、1つのテーマ を追求して、卒業論文を書き上げます。論 文のテーマの決定から、実装、実験、論文執 筆までは4カ月。論文は原則的に英語で執 筆します。苦労が実って、国際学会での発 表につなげる人もいます。この時期は皆、 かなり忙しくなります。

「研究」の世界を覗く

演習IIIは、ほとんどの学生にとって、はじ めての研究の体験になります。3年生まで の講義や演習では、情報科学の基礎を学 びますが、演習川のテーマは自分で選ぶも の。教科書のない最先端の問題に取り組 みます。

課題は研究室によって異なります。基本 的には最初にテーマを決めたあと、関連す る論文を読み、その内容を自分なりに噛み 砕いて研究室で発表し、論文で取り上げ られている手法を実際に実装したり、試行

錯誤で新しい手法を実装したりします。そ のなかで、「研究」の世界がぼんやりと見え てくるでしょう。それぞれの研究室によっ て、研究内容はもちろんですが、研究の進 め方や研究室の雰囲気も大きく異なるこ とにも気付きます。

Aセメスターからは、配属先の研究室で さらに本格的な研究が始まります。指導教 員や先輩の力を借りつつも、世界中の研究 者と同じ土俵に立つことになるのです。

僕らの研究室めぐり

[村上]私はアルゴリズムやグラフ理論に 興味があり、最初に今井研究室を訪問し ました。巨大離散アルゴリズム・計算量 理論・離散数学・量子計算のなかから興 味のあるテーマを決め、関連のある最新 の論文を選びます。

私は大規模なグラフに対するアルゴリ ズムについて研究することにし、KDDと いう国際会議でBest Paperに選ばれた 論文を選びました。大規模グラフを行列 として見たとき、その固有値を近似的に 求める手法によって、数百万単位の頂点 があっても計算が可能になります。最新 の論文を読み、自分でも何か新しい発見 ができないか積極的に考えるのが今井

次に訪問したのは機械学習グループ の研究室です。事前に機械学習のアルゴ リズム・理論・応用のうちどれに興味が あるのか尋ねられ、自身の興味に合った テーマを決めます。漠然と機械学習系に 興味があったものの具体的にどんな研 究があるのか詳しく知らなかったのです が、興味の持てそうな内容をじっくり考 えて決めることができました。最終的に は、時系列系のモデルに興味がわき、い くつかの論文を読んで結果が再現でき るか実験もしてみました。

最後は計算機科学グループで、私は MLIRというコンパイラの中間表現を含 めたコンパイラ基盤について調べまし た。それほど馴染みがある分野ではな かったのですが、論文だけではなくスラ イドや映像資料などが公開されていたの で、それらを確認しながら進めて行きま した。発表時に先生方が細かいところま で丁寧にコメントしてくださったので、た いへん勉強になりました。

[筒井]私はかねてからGPUを用いた並

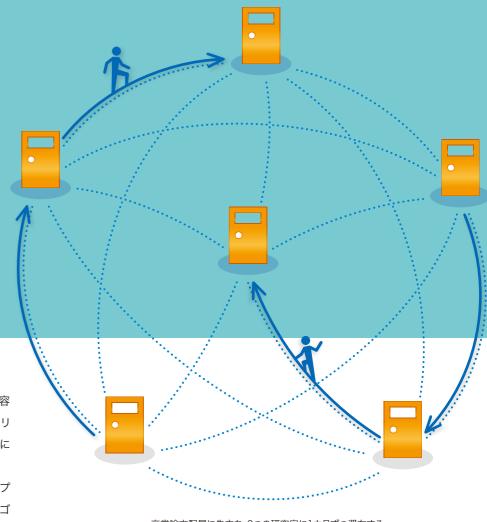
研究室のスタイルで、論文を読んで内容 をまとめるだけでなく、自身で実装やオリ ジナルの実験を行い、実際に研究室に 入った時のイメージがわきました。

> 列計算に興味があったので、ある程度そ れに沿った研究ができる研究室を訪問 しました。 最初に訪れた高前田研究室では、興

味のあったGPUを用いた疎行列積の高 速化に取り組みました。既存のGPU疎 行列積アルゴリズムを、最新のGPUに搭 載された行列積専用の回路を用いて動 作するように改良するものです。私の書 いたコードが悪かったためか、結果は従 来のコードより遅くなってしまいました。

次に訪れた須田研究室でも、引き続き GPUの疎行列積の課題に取り組みまし た。ここでは行列積専用の回路を用い ず、一般的なGPUを使用して疎行列積 を高速化するアルゴリズムの改善を試み たのですが、既存の手法をCPU実装す るところまでで手一杯になり、GPUを 使った実装まで辿り着きませんでした。

最後に訪れた谷中研究室では、課題


のテーマの選択肢が4つ与えられ、私は そのなかから画像と文の間の意味的な 関係を推論するシステムを選びました。 画像と文の情報を論理式に変換し、それ らを定理証明器などに通すことで意味 関係を推論します。このプログラムは事 前に与えられ、できればその一部の改善 をしてみたかったのですが、プログラム の実行に必要な環境が複雑で、演習IIIで

なかなか納得のいく成果は上げられ なかった演習|||ですが、自分で課題を設 定し、実際に手を動かして目標の達成を 目指す経験は無駄ではありませんでし た。実際、その後の卒業研究では、演習III で着目した課題とスケジュール管理の感 覚が活きて、自分でも納得のいく研究成 果を産むことができました。

はプログラムのビルドまでで時間切れと

なってしまいました。

(2022年4月 村上 直輝·筒井 政成)

卒業論文配属に先立ち、3つの研究室に1カ月ずつ滞在する

ISero CHECK! 1 卒業までの あんなこと こんなこと

I'd like to talk.

視線と姿勢、構成の組み立て方、 よりよい言い回しなど、英語での プレゼン方法を少人数クラスで 特訓。

夏休みなどを利用して、国内・海外企業 や研究所でインターンに行く人も。

インターン

進路ガイダンス

研究科の「進路ガイダンス」をチェック。企業人が 語る「グローバル時代に求められる人材とは」、 就職活動Tips、博士課程で培った力をいかに活 かすかのOBトークなど。

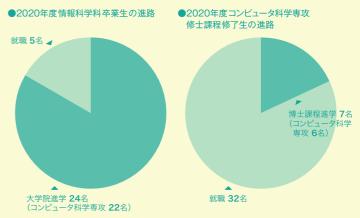
就職ガイダンス

留学

学科・専攻の「就職ガイダンス」で、就職事情を チェック。キャリアサポート室と連携した企業の 求人情報や技術説明会などもある。

卒業生の約90%が、 情報理工学系研究科 コンピュータ科学専攻 に進学。

卒業


泣くんじゃない。 今日こそ完成させるんだ!!

卒業論文.....締切り目前

卒業後の進路

情報科学科の卒業生の多くは大学院(コンピュータ科学専攻)に進学しますが、他専 攻や他大学に進学·留学したり、企業や官公庁·公共企業体などに就職したりする方も あります。

情報科学科卒業後、コンピュータ科学専攻修了後の就職先イメージは、以下のと おりです。卒業年時点の集計なので以下の数字には表れていませんが、博士課程修了 後に大学に在籍したあと、企業の研究機関や海外の大学に就職する例もあります。

キョージュ

 須田研究室
 p.18

 小林研究室
 p.19

 今井研究室
 p.20

 五十嵐研究室
 p.21

 宮尾研究室
 p.22

 谷中研究室
 p.23

 杉山·石田研究室
 p.24, p.25

 佐藤研究室
 p.26

 横矢研究室
 p.27

 吉本研究室
 p.28

 加藤研究室
 p.29

 高前田研究室
 p.30

理学部7号館

情報科学科では、コンピュータに関連する分野を扱う各研究室が協調しながら活動しています。 研究室ごとに特色のある専門を持っていますが、狭い分野だけを扱うのではなく、

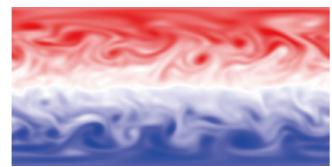
他の領域への広がりがあります。詳しくは研究室ごとの紹介をご覧ください。

数値 シミュレーション、 高性能計算

コンピュータの中の小宇宙

科学技術シミュレーションの未来を拓く

須田 礼仁 教授 Reiji Suda


コンピュータの中に どんな世界をつくるか?

コンピュータは小さな宇宙だ。宇宙には 何があるか? 空間と、それを満たす物質 と、物質の挙動を決める物理法則である。 物理法則に従って、実に多様な現象が宇宙 の中で起こる。コンピュータも同じだ。宇宙 空間の代わりにメモリ空間があり、物質の 代わりに情報(データ)がメモリ空間に満ち ている。そして、物理法則の代わりにデータ の挙動を決めるのはプログラムである。ど ういうデータをメモリに満たし、どういうプ ログラムをつくるかによって、コンピュータ の中にはさまざまな世界が広がる。現実の 世界を模擬することもあれば、現実にはあ りえない世界をつくりだすこともできる。コ ンピュータの中にどんな世界をつくりだす か、それは君たちの想像力しだいだ。

第3の科学―シミュレーション

スーパーコンピュータが登場してから、コンピュータシミュレーションは「第3の科学」といわれるようになった。「第3」というからには、先行するものが2つあるわけだが、それは「実験」と「理論」である。シミュレーションという言葉の意味は模倣だが、実際には模倣以上のものである。理論はむろん重要だが、ちょっと複雑な問題になると数値計算

高速球面調和関数変換法を用いた気

に頼らざるを得ない。実験では実現できないような理想的な条件がシミュレーションでは設定できるし、現実にない性質の物質を使ったり、地球や宇宙の変化のように物理的に実験できないものでも、シミュレーション上で実現できる。風洞実験では測定器が設置してある場所以外の流れは測定できないが、シミュレーションなら空間のすべての点における流れの情報を得られる。このように、シミュレーションは実験や理論に並ぶ研究手段となった。工業製品などの設計・最適化にコンピュータシミュレーションが大活躍しているのもよく知られているだろう。

アルゴリズム、高性能プログラミング、 これが我々の研究テーマだ

では、コンピュータさえあればやりたいシミュレーションが簡単にできるのかというと、話はそれほどたやすくない。シミュレーションの実現のために必要なものを「SMASH」だと言う人がいる。

S(Science):まずシミュレーションの対象そのものに対する理解が必要だ。

M(Model):シミュレーションしたい対象物や法則を、コンピュータで扱えるように表現する。

A(Algorithm):計算方法によって、速度 や精度がまったく違う。適切な計算方法を 設計することが重要だ。 S(Software):スーパーコンピュータなどでは、それに適したプログラミングが必要になる。

H(Hardware):コンピュータの性能を 最大限に引き出すには、ハードウェアを正 しく理解しなければならない。

未来を拓くシミュレーションには SMASHのどれひとつも欠かせないが、実はこのなかでかなめになるのが中央にある「A」である。アルゴリズムが適切でないと、計算はできても精度がまったく足りなかったり、プログラムをいくら工夫しても、コンピュータの性能を活かしきれないなど、根本的な問題がいろいろと発生する。

我々の研究室は、この「A」と2つ目の「S」をおもな研究テーマとして、新しいハードウェアを活かしたプログラム手法、高速アルゴリズムなどに取り組んできた。気象計算に使われる球面調和関数変換の世界最高速のアルゴリズムは、我々が考案したものである。最近はハードウェアに自動適応する「自動チューニング」の研究にも取り組んでいる。科学技術シミュレーションの未来を拓くために、これからもさまざまな問題に貪欲に取り組んでいきたい。

研究テーマ

■数値計算アルゴリズム

■計算の高速化・並列化 ■科学技術シミュレーション

●参考データ須田研究室:

http://olab.is.s.u-tokyo.ac.jp/~reiji/sudalab.html

理論計算機科学

バグのない ソフトウェアを目指して

プログラム理論の深淵探究を実世界に役立てる

小林 直樹 教授 Naoki Kobayashi

ソフトウェアの高信頼化は 待ったなしの課題

飛行機や自動車から、銀行のATM、医療器具にいたるまで、いまや身の周りのあらゆるものにコンピュータが内蔵され、ソフトウェアによって制御されています。そのソフトウェアに致命的なバグ(欠陥)があったら? 考えたくないことですが、実際、ソフトウェアの欠陥による事故やトラブルは頻繁に起きており、従来のソフトウェア開発手法の限界を示しています。

そこで小林研究室では、数学的理論を駆 使してソフトウェアの信頼性を高める研究 を行っています。

たとえば最近では、プログラムや暗号プロトコル(ネットショッピングなどで、暗号を用いてカード番号などの機密データをやりとりするための通信方式)を検証するための理論を構築し、それに基づいた全自動検証ツールを作っています。理論を応用して、プログラムに間違いがないことや通信プロトコルの安全性を確かめられます。

プログラム理論の奥深さと 威力に魅せられて

ソフトウェアの理論は、ソフトウェアの信頼性を上げるという工学的な意味だけでなく、「学問的にみて奥が深く面白い」という点も研究の大きな動機です。

元のデータ 诵堂の検索・変換 変換後のデータ Webページ、ゲノム情報などの 検索·変換結果 大規模データ -夕の展開なしに 圧縮 展開 圧縮 展開 検索・変換 圧縮したデータ 変換後の圧縮データ 検索・変換結果を生成する 元データを生成するプログラム 高階モデル検査に (ラムダ式) プログラム 基づく検索・変換 高階モデル検査のデータ圧縮への応用

てモデル化できますが、この「ラムダ計算」 は実にシンプルで奥深いものです。 「ラムダ計算」の世界には「関数」という 概令しかなく 許される演算は「関数を作

たとえば、高レベル言語で書かれたプロ

グラムは、「ラムダ計算」というものを用い

概念しかなく、許される演算は「関数を作る」「関数を適用する」の2つのみです。にもかかわらず、これだけで実際のプログラムを記述するのに必要な概念、整数や木構造などのデータ、条件分岐、繰り返し、再帰などの制御構造まで、なんでも表せてしまいます。

このラムダ計算は、カリー・ハワード同型 対応というものを通じて論理学の世界とも つながり、それがプログラム検証の土台に なっています。学問的な奥深さと幅広さに 加え、現代社会における重要問題の解決に 貢献できること。この両面性が、ソフトウェ アの基礎理論を研究する醍醐味でしょう。

高階モデル検査

現在とりわけ魅せられているのは、高階 モデル検査です。モデル検査というのは、 ハードウェアやソフトウェアなどを数学的 にモデル化し、網羅的に検証するための技 術です。発案者らが、コンピュータサイエン スのノーベル賞ともいわれている「チューリ ング賞」を2007年に受賞し、産業界にも 徐々に採り入れられるようになりました。

高階モデル検査は、モデル検査をさらに強力にしたものです。2000年ごろから理論計算機科学者のあいだで研究されてきましたが、最近まで実際に問題を解く方法に天文学的な時間がかかる非現実的な

アルゴリズムしかなく、応用もまじめに研究されていなかったのです。

ところが、我々の研究で現実的な高階モデル検査アルゴリズムが見つかり、それに基づいて世界ではじめての高階モデル検査器が現実のものになりました。それがさらに、さまざまな応用につながっています。

冒頭でふれたプログラムの全自動検証 ツールは、実はこの成果に基づいています。 また、高階モデル検査をデータ圧縮に応用 する研究も進んでいます。文字列や木構造 データを、「それを生成するプログラム」の 形で表すことにすると、高階モデル検査を 用いて圧縮したままのデータにパターン照 合や置換などの操作ができるのです。

高階モデル検査は理論的にも奥深く、 我々の成果も「ラムダ計算」などさまざまな 理論を発展・融合させて得られました。

「学問的奥深さ」と「実用性(といっても本当に実用になるのはおそらく数十年後のことですが)」の両方を兼ね備えたこのような研究テーマに出会えたことは、研究者としてたいへん幸せだと思っています。

研究テーマ

- ■プログラミング言語
- ■プログラム検証・変換■高階モデル検査■ソフトウェアセキュリティ
- ●参考データ

小林研究室: http://www-kb.is.s.u-tokyo.ac.jp/

アルゴリズム論

さらにその先へ!

アルゴリズムの基礎から量子情報科学へ

今井浩 教授 Hiroshi Imai

新しい情報モデルを求めて

量子力学を研究してみるのはどうだろう、いまのパソコンやインターネットを凌駕した新しい情報科学技術を展開するために。これだけだと脈絡がつかめないかもしれないが、10年、20年先の情報環境がどうなっているか、想像してほしい。いまのパソコンやインターネットがそのまま10年、20年先までも幅を利かせているわけはないのだから

昔を思いおこすと、東大では1980年代にはメールを世界とやりとりできるようになり、今井も1985年にStanford大学の共同研究者との論文執筆のやりとりにメールを使って、国際会議投稿の締切りに間に合わせた。メールは現時点では最もポピュラーな通信手段であるが、それがこれからもずっと情報交換手段の主役というのでは世界は変わっていかないのだ。

若い世代の特権として、それまでにない 世界を切り拓く挑戦ができるということが ある。ぜひ、そのターゲットとして、いまや社 会基盤となった情報科学技術を革新する ことに挑んでもらいたい。その先には、自分 の研究が世界を変えるという素晴らしい体 験ができるはずだ。

では、具体的にいまの情報処理を革新するにはどうすればよいだろう? ひとつのアプローチは、いまある情報処理原理ではない、新しい原理を使うことである。いまのパソコンや携帯電話を制御するVLSIチップがニュートン力学で「0」「1」のデジタル情報を処理するのに対し、VLSIチップの集積度向上に応じてチップ内では量子力学が支配する点に着目して、新原理として量子力学を使ってみようというのだ。

量子情報モデル

量子力学に従う状態(量子状態)で情報を表現し、操作して計算し、相手に送って通信するのが量子情報処理だ。これでニュートン力学ではできない情報処理ができるようになるのだろうか? 答えは「イエス」である。量子力学には、測定すると状態が変わってしまうという量子不確定性原理がある。情報処理的には、量子通信する途中で盗聴されるとこの原理で状態が変化して相手に届くことになり、これをうまく通信方式として構築すれば、長距離通信においても途中で盗聴がないことを保証できるはじめての通信方式になる。これはニュートン力学でデジタル情報処理をしているだけでは不可能な画期的技術革新である。

この暗号通信方式は1984年に提案されたものだが、2007年に我々の研究グループが情報科学を駆使し、世界で初めて定量的に安全性を保証した量子暗号システムの実験実証を行ったところである。

計算の効率という点でも量子状態を 使って計算すると、量子重ね合せという性 質とフーリエ変換を組み合わせて、いまのコンピュータでは効率よく解けないと思われている整数の素因数分解の問題を効率よく解くことができるようになる。これは1994年に示されており、当研究室では、代数的に深化を進めて量子アルゴリズム研究を展開するとともに、量子計算ではじめて可能になるコンピュータ間のリーダ選挙方式を、世界初で提案・実証している。

新しい研究に取り組む面白さ

ここまでで、量子情報科学の面白さをす こしでも感じていただけたなら、若手の 方々にはぜひこの注目を集めている分野 で新しいテーマに取り組む楽しさを実感 してほしい。

新規テーマに取り組むには、まず新しいことを知らないといけない。量子情報科学を展開するには量子力学が必要だ。しかし、それは物理や電子工学分野の人と同じレベルの量子力学を学ばないと先に進めないということではない。量子情報科学のために必要な量子力学は、実は大学生にとってはたいへん取り組みやすいもので、大学入門線形代数を理解していればスタートできる。

こうした壁を冒険して乗り越えることで、 新しい世界が広がっていく。交流する研究 者もさまざまな分野にわたり、分野の垣根 を超えた交流はきっと有意義なものとな る。こうした楽しさをぜひ体感してほしい。

研究テーマ

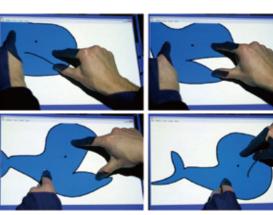
- ■量子計算
- ■アルゴリズム論
- ■組合せ最適化 ■計算幾何
- ●参考データ

今井研究室: http://www-imai.is.s.u-tokyo.ac.jp/ ERATO-SORST量子情報システム: http://www.gci.ist.go.in/ ユーザー インターフェイス

気の利くコンピュータとは?

未来のユーザーインターフェイスをデザインする

五十嵐 健夫 教授 Takeo Igarashi



手書きスケッチによる3次元モデリング

昔のコンピュータは、何をするにも命令 をいちいちキーボードから打ち込まなくて はならず、使いにくいものだったが、ウィン ドウ、アイコン、メニュー、マウスを駆使した グラフィカル・ユーザーインターフェイスの 普及によって、一般の人にも使えるように なった。しかしよく考えてみると、入力デバ イスがキーボードからマウスに代わっただ けで、人間がやりたいことをいちいち細かく 指示しなければいけないことに変わりはな い。このような受動的なインターフェイス は、ウェブやメールのような簡単な操作に は問題がなくても、映像の作成・編集や、他 人とのビジュアルなコミュニケーションな どといった、膨大な情報をいちどに扱うよう な操作には適していない。また、今後家庭 にはいってくると期待されるロボットのよう な、実世界を扱う場面にも不十分である。 このような問題を解決する、未来のイン ターフェイスが求められている。

気の利くコンピュータ

未来のインターフェイスに必要なのは、 人間がコンピュータにいちいち指示を与えるのではなく、人間の自然な動作からコンピュータが人間の必要としていることを察して手を差し延べてくれるような、「気の利く」コンピュータの実現だと、我々は考えている。バーチャルリアリティで右側を見たいときは、「右を見たい」とコマンドを打つのではなく、顔を右に向ければよい。コンピュー タが自身の所在をGPSなどで把握していれば、人はわざわざ現在地を手で入力する必要がなくなる。気の利くコンピュータの実現には、コンピュータあるいはユーザーの置かれている状況を適切に把握し、どのような状況のときどのように動作すべきかが適切に設定されていることなどが必要である。

直接操作によるアニメーション作成手

アイデアいろいろ

このような問題意識のもと、さまざまな新しいインターフェイスを研究している。

ひとつは、ペン入力を活用したインターフェイスのデザインである。ペン入力には、大まかな情報を手早く入力できること、また文字だけでなく絵や図も同時に入力できるという特徴があるが、既存のペン入力手法はその良さを活かしきれていない。そこで、より自由に描画しつつ高度な使い方が可能な手法を開発している。

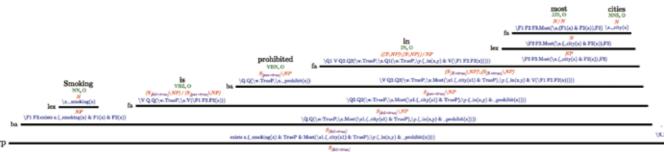
コンピュータグラフィックス(CG)のコンテンツを手早く簡単に作成する技術も開発している。従来、CGは専門家が時間をかけて作るもので、素人が作成するのは難しかった。開発中の、手書きスケッチによる3次元モデリングや、操作の記録と再生によるアニメーション作成手法は、初心者でも簡単に3次元CGやアニメーションを作れるようにするものだ。

画像を利用したコミュニケーション支援 手法、大量の情報を効率よく収集・分析・利 用するための手法、また将来に向けて、家 庭用ロボットを操作するためのユーザーイ ンターフェイスも研究対象である。

ユーザーインターフェイスはまだまだ新 しい研究分野で、解決しなければいけない 問題が多く残されている。また、個人のアイデアがすぐに世界中で使われる可能性があり、エキサイティングな分野でもある。より多くの人がこの分野に興味を持ってくれることを期待している。

研究テーマ

- ■ペン入力インターフェイス
- ■CGを簡単に作るためのインターフェイス ■ロボットのためのインターフェイス
- 五十嵐研究室:
- http://www-ui.is.s.u-tokyo.ac.jp/ http://www-ui.is.s.u-tokyo.ac.jp/~takeo/index-j.html



自然言語処理、 計算言語学

ことばと知能のしくみを解明する

ことばを理解しはじめたコンピュータ

宮尾 祐介 教授 Yusuke Miyao

 $exists \ x.(_smoking(x) \ \& \ TrueP \ \& \ Most(\ x1.(_city(x1) \ \& \ TrueP), \ y.(_in(x,y) \ \& \ _prohibit(x))))$

Combinatory Categorial Grammarによる構文・意味解析、文の構造に沿って意味構造を合成する。"Smoking is prohibited in most cities."という文から"Some cities allow smoking."が言えるか、といった計算を行う。

人間の思考の中枢にある 「ことば」

人間は日々いろいろな行動をしています。朝起きて顔を洗ったり、電車に揺られてぼーっとしたり、新しいアルゴリズムをプログラミングしてみたり。そのうち、どれくらいに「ことば」(自然言語)が関係しているでしょうか。

顔を洗うのはことばと関係ないように思うかもしれません。しかし、なぜ顔を洗うのでしょうか。顔を洗う理由は、おそらく誰かからことばで教わったのでしょう。寝坊したら顔を洗わずに家を出るかもしれませんが、その判断はどうやっているでしょうか。プログラミングしている時はどうでしょう。頭の中で考えているとき、ことばを使っていませんか。

宮尾研究室は、人間が自然言語を理解

したり表出したりするしくみをコンピュータで再現する自然言語処理を研究しています。自然言語を理解・表出するといっても対象は広く、上記のように人間の行動ほぼすべてに関わっているといっても過言ではありません。

自然言語とコンピュータと 知能

例えば、このパンフレットの原稿をコンピュータに書かせるにはどうしたらよいでしょう。1. 何を書くか考え、2. 読者が何を知っているか予測し、3. どのような順番でどの情報を書くか計画し、4. 最終的に文章にしていきます。これをコンピュータで再現するには、自然言語の表面的解析では不十分で、1~3のような思考プロセスやそれに必要な知識や常識も研究対象になります。

特に、ものごとを抽象的にとらえたり論理的思考をする際には言語による抽象化が不可欠で、言語は人間の知的能力の中核と考えられています。すなわち、自然言語処理とは、コンピュータを駆使し、自然言語を通して人間の知能のしくみを明らかにしようとする学問です。

具体的には、文の構造や意味を計算する構文・意味解析のような基礎研究や、質問応答、機械翻訳、対話システム、文章生成といった実社会応用を目指す研究があります。最近は、画像や数値データと自然

言語を結びつけるグラウンディングの研究もさかんです。

データの観察とモデル化

情報科学の醍醐味は、世の中のさまざまなものごとに表れる普遍的な規則性を抽象化してとらえることにあるでしょう。 自然言語処理においても、英語や日本語といった個別言語を超えた「人間の言語」あるいは論理的思考といった「人間の知能」の規則性を、形式言語理論、情報論理、機械学習などを利用してモデル化する面白さがあります。

その一方で、自然言語はあくまで自然の 産物であり、自分の想像はだいたい間違っ ていることに気づかされます。言語はこう なっているだろう、という先入観にとらわ れず、実際の言語データを深く観察するこ とが必要です。

自然言語処理の研究では、データの観察、モデル化、実験による検証というプロセスを繰り返します。これは時として失敗続きになることもありますが、それをくぐり抜けて自然言語の新たな一端を発見する楽しさは格別です。

研究テーマ

- ■自然言語の構文解析、意味解析、意味推論
- ■質問応答、対話システム■グラウンディング
- ●参考データ宮尾研究室:

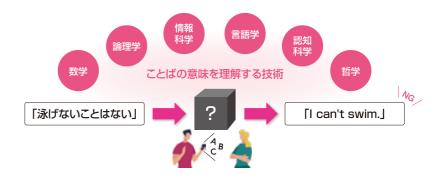
https://mynlp.is.s.u-tokyo.ac.jp/ja/index

計算言語学、推論、自然言語処理

多角的な視点から、人が「ことば」を 理解する仕組みを探求する

人工知能と自然に会話できる日を目指して

谷中瞳講師 Hitomi Yanaka


近くて見えぬは「ことば」

「そばにあるものほど、その実態はよくわからない」といった意味は、「遠きを知りて近きを知らず」「灯台下暗し」「傍目八目」「近くて見えぬは睫」と、実にさまざまな「ことば」で表せる。そして、「ことば」はまさに、「そばにあるものほどその実態はわからない」もののなかでも最たるものである。私たちが何気なく使っている「ことば」は、コンピュータからみるとただの記号の並びにすぎず、ベクトルや論理式のようなさまざまな形式に変換することによって、「ことば」の意味を計算可能となる。

情報技術の発展とともに、「ことば」を人に代わって計算してくれる人工知能技術――自然言語処理技術――は、私たちの日常においてより身近な存在となった。例えば、レストランでメニューを見ていてわからない単語がでてきたら、とりあえずどんな食べ物なのかをウェブで検索したり、自動翻訳にかけたりすることが、日常的な所作となった。このとき、思い通りの検索結果がでてきたりしたことはないだろうか。試しに「泳げないことはない」という文を翻訳にかけてみると、「泳げない」という全く反対の意味の訳文が返ってくるかもしれない。

「ブラックボックス」な 言語処理技術

ここで、自然言語処理技術の中身を見て みよう。最近の自然言語処理技術では、機 械学習や深層学習による統計的なアプローチがよく用いられている。例えば自動 翻訳技術では、日本語のデータを入力として、英語のデータを出力するように学習することで、翻訳に必要な規則を獲得していく。大規模なデータを学習すればするほど、より多くの規則を獲得でき、翻訳でき

る精度をかなり高い精度にまで高められる。しかし、このように入力と出力を直接結びつけて学習を行うアプローチでは、中間の処理過程がブラックボックス化しているため、なぜこの翻訳は正しくできて、なぜこの翻訳は間違っているのかという理由を見つけることが難しい。そのため、一見するとさまざまな言語を訳すことができて賢くみえる自動翻訳技術だが、翻訳の誤りを自ら省みることはできず、私たちのように「ことば」の意味を本当に理解できているのかどうかはわからない。

より人間らしい言語理解の探求

しかし、そもそも私たちはどうやって「ことば」の意味を理解しているのだろうか?この問いは、言語学や哲学、認知科学の研究に共通する、きわめて本質的な問いである。本研究室では、これらの関連分野のアプローチと情報科学や数学、論理学のアプローチとを組み合わせて、データから学習する自然言語処理技術はどこまで「ことば」の意味を理解できるようになるのか、どうすればより人間のように自然言語の意味を考えて、理解する人工知能技術を実現できるのかについて、多角的な視点から探求している。多角的な視点から言語処理を考えることで、ブラックボックスを開く

鍵が見えてくる。

私たちはどこかで、チャットボットなどの 人工知能には紋切り型の会話しかできないと割り切っていないだろうか。しかし、コンピュータ上で言語の意味を表現して計算する仕組みを考え、実装することで、人間が「ことば」を理解する仕組みを明らかにできるとともに、まるで人と会話しているかのように人工知能と自然に会話できる日がくるかもしれない。

研究テーマ 研究テーマ 一統計的言語モデルの学際的・多面的分析

- ■機械学習と記号論理を融合した自然言語推論
- ■人とシステムの相互作用による意味処理

●参考データ 公由研究室:

台中研究至 https://ylab.mystrikingly.com/

機械学習、統計的データ解析

コンピュータはどこまで 賢くなれるか?

数理によって切り拓く人工知能の未来

杉山 将 教授 Masashi Sugiyama

コンピュータはどれほど 人間の賢さに迫れるか?

少し前まで、コンピュータは、あらかじめ 決められた手順どおりに情報を処理するだけの装置だった。しかし、コンピュータに自 ら手順を学習させる「機械学習」とよばれる 知的情報処理技術の登場によって、それまでコンピュータにできなかったことだけでなく、人がこれまで気付かなかったことも可能になりつつある。

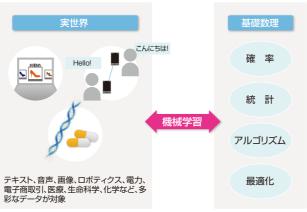
クイズ番組で人間のチャンピオンを打ち負かしたり、将棋でプロ棋士と互角に渡り合ったりしたりしているコンピュータの中では、まさに機械学習の技術が使われている。

検索エンジン、翻訳、通販サイトの商品 推薦、CT画像からの疾患検出など、機械 学習の技術は私たちの身の回りの様々な 場面で活用されている。杉山研究室では、 多彩な応用分野に通底する普遍的な学習 原理を理論的に追求し、そうして得られた 汎用的な学習アルゴリズムを実世界の問 顕解決に役立てている。

学習するコンピュータ

機械学習は、統計的な手法によってデータの背後に潜んでいる規則性をとらえ、最

適な意志決定方法を 導く。機械学習の標準的なスタイルは、人間がコンピュータに知識の一部を教え、教わっていない部分をコンピュータに推論させる「教師付き学習」というものである。うまく学習できれば、コンピュータは人が教えていなかった未知の状まれなかった未知の状まれなかった。


ンピュータは人が教え ていなかった未知の状 況にも対応できるよう になり、人間のような柔軟で知的な情報 処理が可能になる。実際、最先端の教師 付き学習手法はかなり洗練されてきて、一

部では人間並みのレベルに達しつつある。

一方この方法は、難しい問題を解こうとするとき、人間がコンピュータに知識の一部を教える手間が大きくなってしまう。そこで、データに潜在している知識をコンピュータが自動的に抽出する「教師なし学習」への期待が高まるが、教師なし学習では、そもそもどんな知識を得たいのかがはっきりしない。そこでさらに、人手があまりかからない不完全な知識を用いる「半教師付き学習」、過去に学習した知識を再利用する「転移学習」、実世界との相互作用を通して情報を得る「強化学習」など、より柔軟な学習形態が注目を集めている。

実世界を意識しつつ 抽象化するおもしろさ

ビッグデータ時代のいまは、多様なデータがインターネットやセンサーから大量に 集まってくる。機械学習手法を駆使してこれらのデータを解析すると、まったく新しい知見が得られることがあり、産業や科学の発展に役立てられる。これが機械学習研究の楽しみのひとつである。

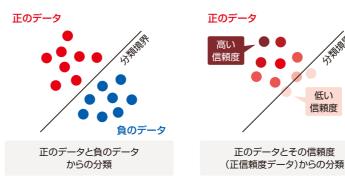
機械学習は基礎数理と実世界の橋渡し

一方、それぞれのデータには特有の特徴があり、詳細にデータを解析しようとすればするほど各分野に特化した専門知識や経験が必要になる。そのため、実世界での応用を強く意識しすぎると、全体を見通すことが困難になってしまう。

機械学習研究の真の醍醐味は、その抽象性にある。実世界から得られるデータを意識しつつも、その多様性に惑わされることなく学習問題を数理的に定式化することにより、そこからさまざまな分野に共通する本質的な概念を見抜き、ブレイクスルーへつなげていくことが可能だ。このように、数学に根付いた確固たる基礎研究を進めつつ、実世界の難問に柔軟にアプローチしていくのが研究室の特色だ。

機械学習は、数学と実世界とを橋渡しする魅力的な研究分野である。多くの学生がこのエキサイティングなテーマに挑戦してくれることを期待している。

研究テーマ


- ■機械学習の基礎理論の構築
- ■実用的な学習アルゴリズムの開発 ■学習技術の実世界への応用
- ●参考データ 杉山・石田研究室: http://www.ms.k.u-tokyo.ac.jp

機械学習、 統計的データ解析

実用的で信頼性の高い 機械学習を確立する

使いやすく、安心して使える技術へ

石田降 講師 Takashi Ishida

ものを2つのグループに分ける方法:2クラス分類(左)では正と負の両方のデータが必要。正信頼度分類(右)では、 色のデータがなくても、正のデータとその信頼度が2つかりば分類倫界を学習できる

開拓地が広がる機械学習

機械学習とは、コンピュータがデータからパターンや知識を自動的に学ぶ技術のことです。代表的な機械学習技術のひとつ、「分類」を例にとると、与えた写真に写っている物体が何か(それはスマートフォンなのか、キーボードなのか、コーヒーなのか?)を判断(分類)できます。与えられたデータから何かを機械的に認識・検知できるのは非常に便利なので、音声認識や物体認識、異常検知など、いろいろなところで使われています。

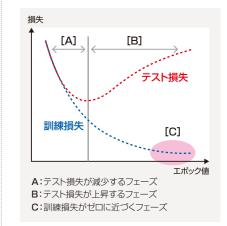
機械学習技術は以前からIT産業で盛んに使われてきましたが、今までとは異なる分野にも急速に需要が広がったことから、これまでとは違う新しい種類のデータを扱ったり、新しい問題に直面するケースも増え、そこに機械学習の開拓地が広がりました。

基礎技術の研究を目指す

研究室では特に、機械学習の基礎技術となるアルゴリズムを開発しています。例えば、未知のデータに対する汎化性能を高めることもそのひとつです。学習データに対して精度高く予測できても、未知データではうまくいかない、というのはよくあることです。また、データそれぞれに答えとなる教師情報を人間が付けて学習させるこ

とも多いのですが、そのコストは高く、時間もかかります。冒頭で挙げた写真分類の例でも、機械学習を活用する前に、まずは写真をたくさん集め、一枚ずつ「これはスマートフォン」「これはキーボード」とラベルを付ける必要があります。その代わりに、もっと弱い情報、不完全な教師情報から、精度よく学習させることも研究題材です。

そのほか、センサー誤作動などによって 異常データが混在していても悪影響を受 けずに学習する工夫や、データを収集する 環境が変化しても信頼して使えるアルゴリ ズムの考案なども行っています。


研究室の活動をまとめると、さまざまな 観点からより実用的で信頼性の高い機械学 習技術の確立を目指していると言えます。

何が魅力か?

機械学習の研究の面白いところは、研究の間口が広く、人によって研究スタイルが大きく異なることです。紙と鉛筆(人によってはタブレットとスタイラス)を使って数式を導出することから出発することもあれば、アルゴリズムの実装と数値実験を通して何か新しい着想を得たり突破口を見つけたりするようなケースもあります。実際には、この両者を行き来することでクリエイティブな研究に繋がることもあります。

研究は、実世界のある課題を解決した

いという具体的なモチベーションから始まることがあります。ところが、実際に技術を形にして論文を公開してみると、想像していなかったアプリケーションに使われて驚かされることもしばしばです。ある程度の汎用性を求める基礎研究ならではの面白さでしょう。ぜひ、この自由な研究スタイルと結果が広がっていく素敵な感覚を味わってください。

過学習の概念。学習を続けていくと訓練損失は下がり続けるものの、テスト損失は途中から上昇する

研究テーマ

■弱教師学習、少数データ学習などの機械学習アルゴリズム ■実世界における機械学習の応用

●参考データ 杉山・石田研究室: http://ms.k.u-tokyo.ac.jp/ https://takashiishida.github.io/

機械学習、統計的データ解析

機械学習を科学するための 基礎理論を築く

情報科学と人の知性が交差する世界

佐藤 一誠 准教授 Issei Sato

「学習」とは何だろう?

人があるモノゴトを「学習した」と感じるのは、そのモノゴトについて得られた情報を「未知の問題に活用できた」時ではないでしょうか。これは計算機の学習を考える過程で行う「汎化」の礎となる概念です。つまり「学習とは、汎化能力を向上させること」です。情報という観点では、「あるテーマに関して得られた情報を、そのテーマにおける未知の問題へ活用可能な形で抽象化すること」だといえます。

統計的機械学習は、データを数理モデルによって抽象化することで、未知の問題に対して予測を行う情報科学の技術です。汎化の観点でデータを抽象化するためには、「どのような数理モデルが良いのか」というモデリングの研究と、「データをどのように数理モデルにフィッティングするか」というアルゴリズムの研究があります(中央上図)。研究室では、このモデリングとアルゴリズムの新しい理論を構築し、実応用によって実証分析をしています。それを推し進める最大の力は、「学習」に関する深い理解と、縦横無尽に駆使する線形代数、関数解析、確率統計、最適化理論などの数学です。

データ 学習アルゴリズムの研究 学習モデルの 研究

機械学習は「モデリング」と「アルゴリズム」の研究で構成される

「学習」を科学する

研究室では主に、「学習」を構成するう えで重要な以下の4つの要素を理論的・実 証的に分析しています。

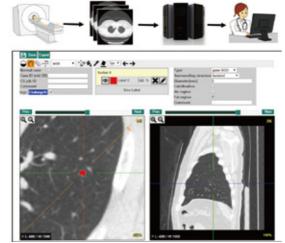
「1 汎化と記憶」「2 摂動と不確実性」「3 表現の学習」「4 頑健性」

これらは互いに密接に関わっており、それぞれの学習における役割を数理的に理解することはもちろん、これらの関係性を

明らかにすることで「学習」またはそれに伴う「知能の創発」に関する深い理解が得られると考えています。また、そのような理解が人間の知能の理解にもつながるのではないかと考えています。

人とコンピュータが 協力しあう社会

コンピュータがデータから 学習することで、人の社会活動 を支える新しい仕組みが生ま れます。例えば、東大病院と現 在共同で行っている研究では、


機械学習を用いて医用画像の病変を分析 し、医師の読影を支援するシステムを開発 しています(右図)。

また、研究者の研究活動を支援するシステムも開発しています。一般的に研究者は、実験のデザイン、実験結果の分析、実

験設定の試行錯誤を繰り返し、研究を進めます。そこで、研究者が実験をデザインし、機械が実験と結果の分析、そして実験設定の試行錯誤を担当することで研究者を支援するという仕組みが実現可能です。

研究は点と点が つながる瞬間が楽しい

研究の世界では、それまで関連していなかった分野が結びつき、時に美しい結果を導きだすことがあります。このような瞬間を世界中の研究者とともに創造していくことは、他では経験しがたいことだと考えています。「学習」という研究を通してさまざまな分野のつながりの美しさに魅了されるのも、研究の醍醐味ではないでしょうか。

東大病院と共同開発している読影支援システム。CTやMRIで スキャンした画像を収集し、病変検出によって読影を支援する。

研究テーマ

- ■柔軟な数理モデルの構築
- ■高速な学習アルゴリズムの開発 ■機械学習技術の実社会への応用

●参考データ

https://www.ml.is.s.u-tokyo.ac.jp/ https://www.ml.is.s.u-tokyo.ac.jp/issei-sato-jp 画像解析、 コンピュテーショナル イメージング

計算で見る見えない世界

地球規模で実世界を理解する知的情報処理

横矢 直人 講師 Naoto Yokoya

人が視覚を通して世界を認識するよう に、コンピュータにもカメラの画像から実世 界を理解させようとするコンピュータビ ジョンの研究は、人工知能の一分野として この半世紀で大きな発展を遂げてきた。機 械学習によりその技術開発は加速してお り、自動運転・防犯・医療画像診断などさま ざまな分野で実用化が進んでいる。人の視 覚能力を超えて世界をより深く理解するた めに、見えない光を使った多様なイメージ ング技術がめざましい進歩を遂げてきた。 その応用先は、ミクロからマクロまで幅広 いが、カメラの性能には常に限界があり、そ れが画像解析のボトルネックとなっている。 横矢研究室では、画像の取得と理解に関し て、コンピュータによってセンシングの限界 を超えることを追求している。

コンピュテーショナル イメージング

カメラの空間・時間・波長分解能やSN 比などの各種性能は、トレードオフの関係 にあるため、1つのカメラで得られる観測 データにはハードウェア由来の不完全性が 存在する。しかし、不完全な観測データか ら元の信号を復元してやると、解像度やノ イズなどのハードウェアの限界を克服でき

シミュレーションと機械学習の融合による3次元変化認識。被災前後の画像と地形データから、 2値の変化情報だけでなく、浸水梁や十万流による地形変化を推定した

る。また、CT・MRI・合成開口レーダ・圧縮 分光イメージングなどのように、画像形成 に計算が内在する撮像法により、本来は得 られない情報の取得が可能となる。これら はコンピュテーショナルイメージングと呼 ばれ、画像再構成のための逆問題をいかに 正確かつ効率的に解くかが鍵となる。研究 室では、機械学習・最適化・信号処理に基 づいて、画像再構成の逆問題を解くための 数理モデルの構築やアルゴリズムの開発 に取り組んでいる。

コンピュテーショナル イメージング

人工衛星から地球を観測するリモートセンシングは、コンピュテーショナルイメージングが不可欠な代表的分野のひとつである。私たちの未来を左右する地球規模の問題を解決するためには、衛星画像から全球スケールで実世界を理解する必要があり、大規模なリモートセンシング画像データから、3次元地図情報を自動抽出する知的情報処理の研究を進めている。

地球観測では、分光イメージングや合成 開口レーダで得られるデータによって、人 には見えない世界を観ることができるが、 センサの性能は衛星ごとに千差万別だ。

データ融合に基づく画像解析で、異なるセンサのいいとこ取りをして、各センサ単独では得られない情報の取得を実現することも研究の対象である。

さらに、観測の制約から、 必要な情報が得られない ことも多々ある。例えば、災 害前後の地表面の3次元 変化を捉えることが救援・ 復旧時に求められている が、緊急観測で2次元画像 しか得られない場合がこの問題に該当する。3次元変化の広域計測は難しいため、機械学習のためのデータを集めることは困難だ。そこで、シミュレーションと機械学習の融合により、センシングの限界を超えた3次元変化認識に挑戦している。

情報科学で拓く地球の未来

コンピュータによる画像の取得と理解に 関する研究は、実問題を解くなかで研鑽を 深める分野であり、社会の役に立つ技術に 直結する面白さがある。さらに、これらを駆 使して地球規模の問題の解決を目指すこと は、何にも代えがたいやりがいがある。世界 には、コンピュータとイメージングで解決す べき問題がまだ沢山あり、情報科学で地球 の未来を拓く気概を持つ人材が求められ ている。

研究テー

■画像処理や時空間データ解析

■画像処理や時空間データの防災・環境分野への応用

●参考データ 横矢研究室:

大切充主・ https://naotovokova.com/

https://maotoyokoya.com/ https://www.k.u-tokyo.ac.jp/pros/person/naoto_yokoya/ naoto yokoya.html

計算科学

科学と計算機をつなぐ

自然の不思議を解き明かすコンピュータ

吉本 芳英 准教授 Yoshihide Yoshimoto

コンピュータの発明・発展とその曲がり角

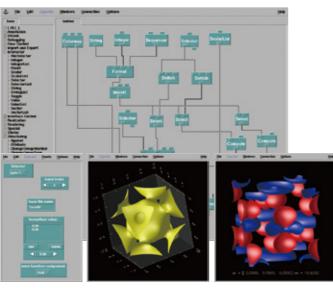
コンピュータ(電子計算機)が発明された背景には、科学技術が大量の計算を必要としているという大きな要因がありました。水や空気の流れ、電子と原子核からできている極小の世界、多数の星々から成り立つ銀河の歴史……これらの理論を構築しても、実際に計算できなければ検証も活用もできないのです。

計算機は、半導体集積回路の急速な進歩、すなわちムーアの法則に牽引されて大きく発展しました。初期のスーパーコンピュータのひとつ、CDC6600(1964年)は、1秒間に100万回程度の四則演算ができたといいます。すでに人間よりもずっと速いのですが、2015年の日本でもっとも高速なスーパーコンピュータ「京」の性能はこの100億倍です。

しかし速さの中身には違いがあります。 実は、「京」は小さな計算機を約10万個も 組み合わせたものなのです。つまり単体の 性能は10万倍程度、それを多数組み合わ せて100億倍の性能を出しているのです。 これを並列化といいます。

並列化は、半導体技術の制約が顕在化して演算器単体の速度向上が困難になっ

た2000年ごろから重要になっているになっているになが、物のの会にが、数わないを担い、複っているが、数わないを引きないを関いませる。 は、数がせっなが、能力をはいりのは、はないののは、できないは、できないは、できないは、できないは、できないは、できないは、できないは、できないは、できない。


の仕事を効率よく実行するのがいかに難し いか、感覚的にわかるでしょう。

そのため、計算機を活用して科学をする計算科学と計算機そのものを研究する計算機科学の関係にも変革が求められています。かつて計算科学は、年々向上していく計算機性能にただ依存することができました。しかし今日、計算科学者がさらに巨大な計算を行うためには、専門分野の知識だけでなく計算機自体の理解が必要になってきています。一方計算機を設計する側にも、振り分けられる資源と目的とする計算のすり合わせが必要とされるようになりました。つまり、計算機が誕生した時と同じように、2つの分野が密接に協力する時代を迎えたのです。

再び歩み寄る計算科学と 計算機科学

吉本研究室はこのような背景で、計算機 科学と計算科学の協調を、教育と研究の両 面から推し進めることを目標としています。

私は計算科学をおもな専門とし、半導体、磁性体、金属、誘電体といった多様な物質の性質の大きな支配要素である電子の

図では、Cuの第一原理電子状態計算を可視化している。 下段中央がフェルミ面、右が波動関数である。下段右の赤 と青の曲面はそれぞれ正と負の等高面を表しており、波動 関数の節の鑑造が分かる。

量子力学をできるだけ写実的に解く手法、第一原理電子状態計算を専門とし、この計算を行なうプログラムxTAPPを維持しています。一方で、国内有数の規模を持つ東京大学物性研究所のスーパーコンピュータシステムの計画運用を経験し、計算機科学への理解もあります。

研究室では、計算機科学と計算科学の境界に立ち、(1)電子状態計算をホームタウンとしつつも、計算科学の幅広い分野で個々に発展している方法論を計算機科学の観点からとらえなおし、両者をつなげること、(2)計算科学のニーズを計算機科学の観点から定義してより本質的な解決法を提案すること、(3)計算科学と計算機科学の相互理解を促す教育、を目指しています。

研究テー

■計算科学

■並列シミュレーションソフトウエア (特に第一原理電子状態計算)

●参考データ 吉本研究室: http://www.

吉本研究室: http://www.cp.is.s.u-tokyo.ac.jp xTAPP:

http://ma.cms-initiative.jp/ja/listapps/xtapp

コンピュータ システムの設計と 実装

社会的価値を生む プラットフォームを創れ

実世界と情報科学の懸け橋となる俯瞰的システム構築

加藤 真平 准教授 Shinpei Kato

検索エンジン、SNSのようなサービス や、誰もが手にしているスマートフォンに は、いずれもアプリケーションやサービス を動かす十台となるプラットフォームが 存在する。アプリケーションに必要な機能 と性能を、ハードウェア、オペレーティン グシステム(OS)を含めた基本ソフトウェ アによって供給し、高いコストパフォーマ ンスで世界的規模に展開、他から抜き出 たプラットフォームを築いたことが、イノ ベーションの源泉となったのである。その 上には、新たなエコシステムが形作られて いった。これらのプラットフォームには、情 報科学に立脚した理論、アルゴリズム、方 法論、そして実装技術がふんだんに注ぎ 込まれている。

加藤研究室は、OS技術を軸足に、ハードウェア・システムソフトウェアから実世界での応用へつながるプラットフォームの創出をテーマとし、現在は、自動運転車の組込みリアルタイムシステム、スーパーコンピュータやデータセンター向けの並列分散システムを研究している。

自動運転車の プラットフォーム

プラットフォームは応用によってデザインが変わってくる。たとえば、ロボットの場合には応答時間に数マイクロ秒のリアルタイム性が、スーパーコンピュータであればどれだけのデータ量を演算するかというス

ループットが求められる。

ロボットの研究の延長線上に生まれた自動運転車は、カメラから得た画像データや光学距離計測センサーから得た距離点群データに対する「認知」、認知された周囲状況をルールベースシステムやニューラルネットワークに適用して次の行動を決定する「判断」、それに従ったハンドル、アクセル、ブレーキの制御による車両の「操作」を、コンピューターによってすべてリアルタイムに行う。カメラ画像や点群データの認知、人工知能的な判断には、高い計算性能が必要なので、そのプラットフォームにはスパコンを車に組み込んでやるくらいの発想と実装力が求められることになる。

現在、身の回りのコンピューターには1つのCPUチップに数個のコア(演算や論理回路を含むCPUの中核部分)を備えたマルチコアCPUが使用されるようになったが、メニーコア技術によって100個以上のコアを備えたCPUが登場し、さらに数千から1万個に集積が進むことが予見できる。その超多数のコアから、応用に合う形で性能を引き出せるようにOSを設計・実装・検証することも、研究のひとつである。

自由な発想と「系」の俯瞰

自動自動車のプラットフォームの研究では、センシング、人工知能、制御などの要素技術を実際に動かし(オープンソースを活用してそれができる時代だ!)、システム全

体の俯瞰と実用化 を見据えたシステ ム統合が欠かせな い。これは、自動運

片手で持てる組込み用GPUスパコン

転車に限らずどのプラットフォームの設計でも同じように言えることだ。研究室では、 基礎となる専門性と応用から見て俯瞰するセンスのどちらも身に着けてほしい。

研究開発の専門化・分業化が進んでいるいま、ハードウェア、OS、システムソフトウェアをすべて自由な発想で選択、あるいは自ら作って、アプリケーションを動かす、「全部アリ」の世界は、自由な研究が可能な大学ならではのことである。実世界と情報科学をつなぐ革新的なシステムは、そのような自由の中から生まれると考えている。

研究テー

- ■オペレーティングシステム
- ■リアルタイムシステム■並列分散システム
- ■並列が献システム

●参考デー

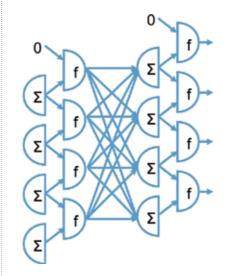
加藤研究至: http://pf.is.s.u-tokyo.ac.jp Autoware: https://github.com/cpfl/autoware/

コンピュータ アーキテクチャ

アーキテクチャとアルゴリズムの 協調設計でまだまだ速くなるコンピュータ

科学技術を牽引する、速くて使いやすいコンピュータを創る

高前田 伸也 准教授 Shinya Takamaeda


CPUの進化に タダ乗りできる時代の終わり

コンピュータの中心的デバイスである CPUの処理性能は年々向上し、同じ時間で扱えるデータや計算の量が増えて、ひと昔前まで原理的には可能でも速度の観点で実用的ではなかった高度な計算ができるようになっています。しかし、CPUの性能の伸びは徐々に鈍化しており、寝て待てばソフトウェアの速度が勝手に速くなる時代は終わりつつあります。そればかりか、組込み機器用の小型のコンピュータから大型のスーパーコンピュータにいたるまで、消費するエネルギー量の増大が大きな問題となっています。

汎用から利用場面に合った システムへ

そこで、特定の計算パターンに特化して 高速・低消費電力に処理できるハードウェ アが積極的に用いられるようになってきま した。GPUはその有名な例で、広く用いら れています。ひとつの命令を多数のデータ に対して同時に適用できるので、これに適

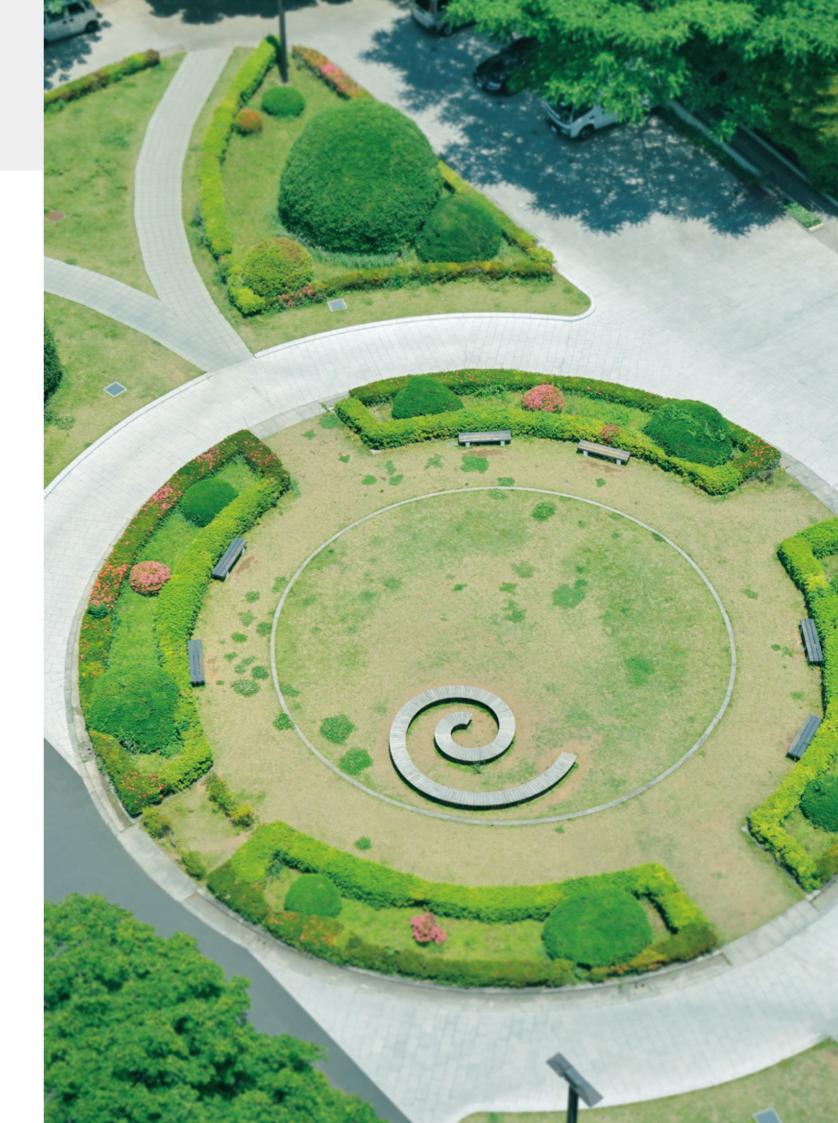
差分二値化:小さな回路で高い認識精度を達成する 一値化ニューラルネットワーク向け活性化関数

した処理内容であればCPUよりも大幅な高速化と低消費電力化が可能です。他のアプローチとして、FPGAという利用者が回路の構造を書き換えられる「やわらかいハードウェア」(デバイス)が注目を浴びています。処理内容を論理回路として展開し、そこにデータを流すという方法で、優れた電力性能を達成できます。さらに最近は、機械学習の高速化と消費電力低減に焦点を当てたドメイン固有ハードウェアの研究が活発です。たとえば、最近のスマートフォンにはディープラーニング用の計算回路が搭載されており、カメラで撮影した写真の認識などがわずかな遅延時間でできます。

アプリケーションをよく知り、優れたコンピュータを創る

高前田研究室では、コンピュータアーキ テクチャ、コンピュータの原理について研究しています。特に、ソフトウェアの処理内 容に寄り添った「ハードウェアアーキテク チャ」と、ハードウェアに適したソフトウェア の「アルゴリズム」の両面から、優れたコンピュータの在り方を追求しています。計算アルゴリズムを固定してハードウェアだけで頑張るのではなく、計算アルゴリズムをハードウェアにとって都合のよい形にすることで、全体として優れたシステムを実現します。現在は、機械学習を中心に、アーキテクチャとアルゴリズムの協調設計で高性能化と高精度化を進めています。今後は、他の利用分野に合ったアーキテクチャの研究も進め、次の汎用アーキテクチャが備えるべき共通の仕組みを明らかにしたいと考えています。

ドメイン固有ハードウェアやFPGAは、賢いプログラマがチューニングすれば、高い速度や電力効率を達せられます。しかし実際には、チューニングは職人技で難しく、ハードウェア性能を100%引き出すことは容易ではありません。そのため、単純に最大効率が優れたハードウェアを考えるだけではなく、自動的に性能を引き出すコンパイラ、プログラマが性能を引き出しやすいプログラミングモデル、コンピュータを扱いやすくするソフトウェアフレームワークなどの研究も進めます。


コンピュータアーキテクチャは、アイデアひとつで世界中のコンピュータシステムと、それに基づく社会システムを変容させるかもしれない挑戦的な分野です。特定の技術にとらわれず、さまざまな観点から優れたコンピュータの実現に挑戦する学生の参画を期待しています。

研究テーマ

- ■コンピュータアーキテクチャ
- ■高位合成コンパイラ
- ■局位台成コンハイラ ■FPGAシステム
- ■アルゴリズム/ハードウェア協調設計
- ■機械学習処理の高速化

●参考テータ高前田研究室:

https://sites.google.com/view/casys-ja/

