宇宙地球フロンティア実地研修 報告書

Report for Onsite Training in Earth-Space Frontier Science

氏名/Name	成田 佳奈香 Kanako Narita
所属部局/Affiliation	理学系 研究科 天文学 専攻 Department of Science , Graduate School of Astronomy
研究機関・企業名 /Hosting Institution	お茶の水女子大学 Ochanomizu University
期間/Period	2025 年 8 月 11 日 2025 年 8 月 29 日 *西暦で記入 2025 / 08 / 11 2025 / 08 / 29 mm/dd /yyyy

Axion-Like Particle (ALP) は種々の理論から予言され、特に超軽量領域の ALP Dark Matter (DM) は宇宙論の小スケール問題を解決しうると期待されている。ALP DM は Chern-Simons coupling を通じて光子と相互作用し、右巻き・左巻きの円偏光モードに異なる分散関係を与える。その結果、DM が満ちた場自体が宇宙論的複屈折を引き起こし、線形偏光の偏光面が ALP の質量に対応した周期で時間変動すると予想される。この効果を利用することで、偏光源の時系列観測を通じて ALP-光子結合定数に直接的な制限を与えることが可能となる。

これまでの先行研究は、単一のスナップショット観測から期待される偏光角の変位を用いて制限を与えていたのに対し、本研究では時系列データに適用して周期的な変動の有無を直接検証した点が新しいアプローチである。

本実地研修では、お茶の水女子大学の藤田智弘氏のもとに滞在し、東京大学総合文化研究科の田崎 亮氏とも議論を重ねながら、原始惑星系円盤を対象とした ALP DM 探査に取り組んだ。具体的に は、Very Large Telescope による近赤外偏光観測データを用いて、原始惑星系円盤 HD 163296 の多 エポック偏光データを解析した。その結果、偏光角の平均値と統計的不定性を導出し、この手法に より初めて ALP-光子結合に対する制限を与えることに成功した。さらに、モックデータを作成し て将来の観測精度を検討したところ、偏光角の不定性を 0.01° に抑えた高頻度モニタリングを行 えば既存の上限を大幅に更新し世界最高感度に達することを示した。これらの成果は日本物理学会 において発表しており、現在査読付き論文として投稿準備を進めている。

Axion-Like Particles (ALPs) are predicted in a variety of theoretical frameworks, and in particular, ultralight ALP dark matter (DM) has been proposed as a potential solution to the small-scale problems of cosmology. Through a Chern–Simons coupling, ALP DM interacts with photons, imparting distinct dispersion relations to right- and left-handed circular polarization modes. As a result, a background filled with ALP DM induces cosmological birefringence, leading to time-dependent oscillations of the linear polarization angle with a period determined by the ALP mass. This effect allows direct constraints on the ALP–photon coupling constant to be obtained via time-series polarization observations.

Previous studies have placed constraints based on the expected displacement of the polarization angle from single-epoch observations. In contrast, our study applies the method to time-series data, directly testing for the presence of periodic oscillations—an approach that represents a novel advancement.

As part of this practical training, I conducted research under the supervision of Dr. Tomohiro Fujita at Ochanomizu University, in close discussion with Dr. Ryo Tazaki at the University of Tokyo. We focused on probing ALP DM using protoplanetary disks as polarization sources. Specifically, we analyzed multi-epoch near-infrared polarization data of the disk around HD 163296 obtained with the Very Large Telescope. From this analysis, we derived the mean polarization angle and its statistical uncertainty, successfully placing the first direct constraint on the ALP—photon coupling with this method. Furthermore, by generating mock datasets to assess future prospects, we demonstrated that high-cadence monitoring with polarization angle uncertainties suppressed to 0.01° could dramatically improve upon existing upper limits, reaching the world's highest sensitivity. These results have been presented at the Physical Society of Japan and are currently being prepared for submission to a peer-reviewed journal.

$$\begin{cases}
(x_{obs}, x_{enie}) = -\frac{3}{2} \left[\varphi(x_{obs}, x_{obs}) - \varphi(x_{enie}) \right] \\
(x_{obs}, x_{obs}) = -\frac{3}{2} \left[\varphi(x_{obs}, x_{obs}) - \varphi(x_{enie}, x_{onie}) \right] \\
= -\frac{3}{2} \varphi_{o} \left[\cos(MY + \delta_{obs}) - \cos(MC + \delta_{en}) \right] \\
= -\frac{3}{2} \varphi_{o} \left[-2\sin(MC + \frac{MC}{2} + \frac{\delta_{ob} + \delta_{ob}}{2}) \sin(MC + \frac{MC}{2} + \frac{\delta_{ob} + \delta_{ob}}{2}) \right] cT = d$$

$$= \frac{9}{2} \varphi_{o} \sin \frac{\pi}{2} \sin(MC + \frac{MC}{2} + \frac{\delta_{ob} + \delta_{ob}}{2}) \sin(MC + \frac{MC}{2} + \frac{MC}{2}$$

写真:議論の様子