

宇宙地球フロンティア実地研修 報告書

Report for Onsite Training in Earth-Space Frontier Science

氏名/Name	阿隅杏珠/ Anzu Asumi		
所属部局/ Affiliation	理学系 研究科 Department of Science	地球惑星科学 専攻 , Graduate School of Earth and Planetary Science	
研究機関・企業名 /Hosting Institution	ソルボンヌ大学 Sorbonne University		
期間/Period	2025 年 9 月 22 日 2025 / 9 / 22	～ 2025 年 10 月 30 日 2025 / 10 / 30	*西暦で記入 2025/11/17

申請者は、宇宙地球フロンティア実地研修において、火星着陸探査機 InSight ミッションに関わるフランスのソルボンヌ大学 Aymeric Spiga 教授と Jorge Hernández-Bernal 博士の元で火星大気における固有モードの研究を行った。

弦楽器が自身の持つ固有振動における共鳴で奏でられるように、固体惑星の大気にも固有振動が存在する。これを大気自由振動と呼ぶ。大気自由振動は全球的な構造を持ち、特定のモードを除くほとんどが約数日～数時間の高周波数帯に属する。したがって、その検出には周波数高分解能な観測が必要不可欠である。本来、火星の地震を検出するために設計された InSight は、サンプリング周波数 1 秒で地表面気圧データを取得することができ、周波数高分解能である。そのため、高周波数帯の大気波動も捉えられると考えた。

そこで、Insight ミッションに深くかかわっている Spiga 教授の研究グループを訪問し共同研究を行った。まず、データ駆動の手法を用いることで大気自由振動成分を抽出した。解析期間は、火星年 35 年の 1 火星年分で、これまで捉えることが出来なかった振幅の季節変化を得ることができた。さらに、観測期間に対応するダストシナリオを与えた LMD 火星大気大循環モデルの出力結果と比較することで結果の堅強性を確認した。また、LMD 惑星グループのミーティングに参加し（写真）、火星以外の惑星大気研究に触れることで知識の幅を広めるきっかけとなった。

Normal modes are free oscillations like the eigenmodes of a musical instrument. In the real atmosphere, normal modes are sporadically excited, each having a distinct global structure depending on the zonal wavenumber and frequency. In the Martian atmosphere, a detection of normal modes from observation is limited, because its theoretical frequency is higher than 24 hours. The surface pressure data obtained by InSight have a sufficiently high frequency resolution to detect atmospheric normal modes. Therefore, I visited Sorbonne University in Paris to analyze the InSight pressure data with Prof. Aymeric Spiga and Dr. Jorge Hernández-Bernal. Prof. Spiga is one of the principal investigators of the InSight mission. We held meetings every week and successfully detected one of the normal modes and its seasonal variation in amplitude for MY35. In addition, we compared the seasonal variation of this mode with that of LMD-GCM outputs, and the results showed good agreement between the two. During my stay, I also had the opportunity to attend a planetary science meeting held by the LMD group. This was a valuable experience that broadened my understanding of planetary atmospheres beyond that of Mars.

月に 1 度開催されるソルボンヌ大学 LMD 惑星グループのミーティングに参加した時の様子。左から筆者、受け入れ研究者の Prof. Aymeric Spiga、共同研究者の Dr. Jorge Hernández-Bernal。