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What’s the building block of our material world? Since ancient Greece times, 

people have been trying to answer this question and find appropriate language or 

pictures to describe them. Today, we know that a drop of water can be composed of 

water molecules, which can be composed of hydrogen and oxygen atoms. An atom is 

composed of a positively charged nucleus and some negatively charged electrons. The 

atomic nucleus consists of chargeless neutrons and positively charged protons. Of 

course, this story can continue to go on, and we can keep breaking up the nucleons to 

find more fundamental particles.  

For a nuclear system at the size of a few femtometers, the quantum effect 

becomes important. The system is described by a wave function |Ψ⟩ and its evolution 

follows the Schrodinger equation, as illustrated in the above figure. But even if we 

can somehow explicitly write down the underlying physics, it is difficult to solve it 

and figure out how they interact and how this interacting system evolves. One 

difficulty is that the degrees of freedom to treat are enormous, which implies that a 

finite computer is needed to solve problems that can easily become nearly infinite in 

dimensionality. Indeed, the nuclear system itself is a quantum many-body interaction 

system, which can be composed of up to a few hundred nucleons. To describe the real 

dynamic of this system, it is necessary to consider and couple all the degrees of 

freedom of the many-body components, which will make the problem quite complex 

and usually out of computing power. In nuclear physics, a general strategy to solve 

this problem approximately is to decouple the many-body component with a non-



interacting picture. This approximation also called the mean-field (M-F) method, has 

succeeded to approximate and explain many experimental phenomena. However, 

methods beyond the mean-field level are required to reproduce some correlation 

effects, such as nuclear collision, pairing, and fluctuation. Recently, a new 

interpretation of the nuclear dynamic makes it possible to combine the mean-field and 

stochastic methods [1]. To explain more clearly this method, we will first turn to the 

mean-field picture in the following part and finally return to its stochastic 

interpretation. 

Imagine one simple situation where a system is composed of non-interacting 

components. To describe the dynamics of the whole system, it is sufficient to follow 

the dynamics of each single component individually since each component evolves 

independently. In quantum language, this means that the wave function |Ψ⟩ of the 

whole system can be written into a product wave function form. When considering the 

interaction, such as the two-body interaction, each component can couple with each 

other, and the wave function’s form may become complex. Instead of a single product 

form, it can be written into their superposition. But in the lowest approximation, it is 

possible to restrict the solution with a single product form and find the most 

appropriate one, which may be the basic idea of the mean-field theory in nuclear 

physics. In this case, the interacting nuclear many-body system can be approximated 

by a collection of independent movements in an average field generated by all the 

other components. This method has been greatly used in nuclear physics to grasp 

some main characteristics of nuclear dynamics. But there is still limitation due to lack 

of coupling between single components degrees of freedom and it has partly 

considered the interaction by an effective external field. To fully consider the 

correlation between different components, methods beyond the mean-field level are 

required.  

In the year 2002, researchers reformulated the dynamics of the nuclear many-

body problem interacting with a two-body interaction [1]. They found that it is 

possible to reproduce the exact dynamics by a series of mean-field trajectories 

following some distribution, as illustrated in the above figure. In other words, the 

trajectory of the exact dynamics can be simulated by stochastic evolution of mean-

field trajectories. The deterministic evolution can be simulated by a series of 

stochastic evolutions. This stochastic evolution has some analog with phenomena in 



other fields, such as Brownian motion described by the Langevin equation. In this 

analog, the single components in the mean-field trajectory are somehow like the 

random Brownian motion suspended in a medium. It is thus possible to bring new 

perspectives from other fields. Since then, various attempts based on this new 

framework have been proposed to go beyond the mean-field level and further 

understand the nuclear dynamics and the correlation effect. This technique has been 

also applied in other fields such as open quantum context to decouple the environment 

and system correlation [2].  

Finally, apart from the new interpretation of nuclear dynamics, why this 

reformulation will be of interest? Indeed, this can be explained by a few aspects. For 

practical calculation, the standard mean-field codes exist already for years. Therefore, 

it is possible to perform several independent stochastic evolutions with much less 

degrees of freedom in several computers, which should be more efficacy than the 

handling of a matrix with large dimensions. Secondly, the analog with phenomena of 

other fields such as the study of Brownian motion may induce new perspectives and 

new techniques to the understanding of nuclear physics.  
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