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1 Introduction

1.1 Super-Kamiokande Dilemma

At the Super-Kamiokande (Super-K), the world’s
largest underground water Cherenkov detector, par-
ticle physicists are aiming to be the first to observe
the Diffuse Supernova Neutrino Background (DSNB)
by detecting inverse beta decay (ν̄e + p → e+ + n).
The DSNB is, theoretically, composed of many neu-
trinos that were birthed from core collapse supernova
– massive stars that exploded during the last stage
of their thermonuclear evolution. These neutrinos are
racing towards the Earth, and the Super-K’s trying
to catch them. Part of this background consists of
Neutral Current Quasi-Elastic (NCQE) interactions
of atmospheric neutrinos with 16O. Together, the two
reactions in Eqs. 1 and 2 imitate the signal of the
DSNB, which, in reality, is produced by a positron
and neutron pair.

ν +16 O → ν + 15N
∗
+ p (1)

ν +16 O → ν + 15O
∗
+ n (2)

Despite this knowledge, pinpointing such a pair
from the DSNB signal with water Cherenkov detec-
tors like the Super-K is challenging. The following
phenomena hinder the efforts of particle physicists:
(1) the de-excitation gammas from 15N∗ and 15O∗

imitate the e+ signal; (2) the neutrons that are cre-
ated when they are scattered off of 16O nuclei during
primary and secondary interactions; and (3) the de-

excitation gammas produced during secondary inter-
actions, like the ones from 15N∗ and 15O∗, copy the
e+ signal. Consequently, the systematic uncertainty
associated with the NCQE process is, at a minimum,
60%. Particle physicists at Super-K would like to de-
crease this uncertainty to at least 10%, and Professor
Nakajima et al.’s SAMURAI proposal can potentially
resolve the Super-K dilemma [4].

1.2 Neutrino Physics

Before diving into the theory of the SAMURAI pro-
posal, the relevant neutrino physics transpiring in
the Super-K must be reviewed. Neutrinos respond
to gravity due to their trace amount of mass, but
they primarily engage in weak interactions (Since
they are electrically neutral, neutrinos are immune to
the strong and electromagnetic forces). There are two
types of weak interactions: charged current (CC) and
neutral current (NC). A different boson is assigned to
each current: the W boson for CC interactions and
the Z boson for NC interactions. When the interac-
tions are quasi-elastic, the neutrino collides with a
nucleon that is bound to a nucleus, and is scattered
off at an angle. This collision would be completely
elastic if none of the participants in the collision were
attached to anything else following the collision.

2 Experimental Method

2.1 Experimental Apparatus

Fig. 1 displays the experimental setup of the SAMU-
RAI proposal. In the center lies the STRASSE liq-
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uid hydrogen (LH2) target, which has a length of
150 mm and a diameter of 31 mm. Surrounding
the STRASSE target are three types of detectors:
(1) the STRASSE tracker, which envelops the target
and consists of two layers of silicon detectors; (2) the
neutron detectors, which detect the neutrons that are
knocked out during the interactions inside the target;
and (3) the CATANA detector, which is composed of
140 CsI crystals doped with Na that are 23◦ to 90◦

relative to the beam axis and measures the energies
of the protons and gammas with calorimetry. Hence-
forth, the scope of this report will be limited to the
STRASSE target [4].

Figure 1: The experimental apparatus.

2.2 Inverse Kinematics Method

To study the interactions between neutrinos and 16O
nuclei, particularly NCQE interactions, the inverse
kinematics method must be employed. In inverse
kinematics, an ion beam is fired at a light nuclear
target like hydrogen or deuterium. From this in-
teraction, several pieces of information can be ex-
tracted: (1) nucleons that recoiled; (2) fragments
that are boosted forward in that they exit the con-
tainer of the target; and (3) gammas that result from
the de-excitation of ions. With the inverse kinematics
method, all the residual nuclei and decay products,
as a function of the excitation energy of 15O and 15N,
can be measured. Consequently, observables related
to the neutrino interactions with 16O can be accu-

rately predicted.

2.3 Target Reaction: 16O (p, 2p)

When an 16O beam is fired at the LH2 target, it
travels through the LH2 medium and triggers many
events. Since these events do not occur within a vac-
uum, the beam loses energy and momentum before
it reacts with the protons. The 16O (p, 2p) reac-
tion, in particular, is the event of interest. As shown
in Fig. 2, two protons, along with a 15N nucleus,
are produced. This 15N nucleus can be excited and,
theoretically, has a maximum excitation energy of 50
MeV.

Figure 2: The event of interest in the target.

3 Data Analysis Method

3.1 Firing Protons & Muons At Sev-
eral Material Media

Prior to simulating the SAMURAI proposal, it is
beneficial to elucidate the relationship between sev-
eral types of material media that particles can pass
through and the energy that these particles deposit
in these material media. To begin data analysis, a
box with dimensions of 3 cm × 3 cm × 1 mm was
constructed in Geant4, a simulation toolkit [2]. 600
MeV of protons and muons were fired at this box,
which was created with the following elements: LH2,
C, Al, Fe, Sn, and Pb. It was observed that, when
protons were fired, the mean beam energy depositions
that Geant4 calculated had increased as the element
material changed from LH2 to Pb. To calculate the
mean energy deposition rates of the protons, Eq. 3
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was applied. It was observed that, as the element ma-
terial changed from LH2 to Pb, the protons’ mean en-
ergy rates decreased. The same trends were observed
when muons were fired at the box (Muons, however,
will be irrelevant for the rest of this report). All of the
aforementioned values can be found below in Tables
1 and 2.

To compare the theoretical and experimental mean
energy loss rates, the momenta of a proton and a
muon were calculated using Eq. 4. The proton has a
momentum of 1.219 GeV/c while the muon has that
of 0.698 GeV/c. Next, the percent errors for all of the
mean energy rates were calculated by finding the ab-
solute difference between the experimental mean en-
ergy rates in Fig. 3 and the theoretical mean energy
rates and dividing this difference by the experimental
mean energy rates. Unfortunately, the percent errors
did not always indicate that the theoretical and mean
energy loss rates were consistent with each other.

Figure 3: Each curve corresponds to a different ele-
ment. Only He was disregarded. The experimental
mean energy rates that were compared to their theo-
retical counterparts were approximated as the lowest
y-values of each curve.

〈
−dE

dx

〉
=

Mean Beam Energy Deposition

Target’s Length · Target’s Material Density
(3)

p =

√
T 2 + 2mTc2

c
(4)

3.2 Missing Mass Method

One observable that can be predicted is the excitation
energy of 15N following an 16O (p, 2p) reaction. This
energy can be determined using the missing mass
method (Eq. 5) [3].

Ex =

√
(Ebeam + Etgt − E1 − E2)

2 −
(
P⃗beam − P⃗1 − P⃗2

)2

−Mfrag

(5)
The following are the variables in Eq. 5:

• Ebeam: the total energy of the 16O beam at the
moment the beam hits a proton;

• Etgt: the rest-mass energy of the LH2 target;

• E1 and E2: the total energies of protons 1 and 2,
respectively, which can both be found with Eq.
6;

• Pbeam: the total momentum of the 16O beam at
the moment the beam hits a proton, which can
be found with Eq. 7;

• P1 and P2: the Lorentz momenta of protons 1
and 2, respectively; and

• Mfrag: the mass of the fragment, namely, the
15N nucleus.

E =
√
(pc)2 + (mc2)2 (6)

p =

√
E2 − (mc2)2

c
(7)

Although the above is known, one cannot proceed
yet. First, one must identify the locations of each 16O
(p, 2p) reaction inside the LH2 target to find Ebeam
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Table 1: Mean Energy Rates for Protons

Protons LH2 C Al Fe Sn Pb
Geant4 Mean (MeV) 0.0333326 0.524522 0.580367 1.51963 1.13241 1.75454

Mean Energy Rate (MeV · cm2 / g) 4.70799 2.62261 2.150304 1.929934 1.549124 1.101321
Percent Error 9.49 38.03 26.49 24.51 19.16 37.67

Table 2: Mean Energy Rates for Muons

Muons LH2 C Al Fe Sn Pb
Geant4 Mean (MeV) 0.0238449 0.31531 0.396935 1.07757 0.860171 1.24999

Mean Energy Rate (MeV · cm2 / g) 3.367924 1.57655 1.47067 1.36598 1.176705 1.10132
Percent Error 25.33 9.91 10.87 8.93 9.48 37.67

and Pbeam. In other words, the relationship between
the 16O beam’s energy deposition and the length of
the LH2 target must be investigated.

3.3 Proton & 16O Beam Energy Depo-
sition

In Geant4, a cylinder with a radius of 25 mm and
varying lengths was created. The initial length was 5
mm, and it was increased by 10 mm increments un-
til 150 mm was reached (The final length will most
likely be the target’s thickness during a real imple-
mentation of the SAMURAI proposal). The parti-
cle gun fired 1,000 protons with an energy of 200
MeV/nucleon. In Fig. 4, the proton beam’s energy
loss and the target’s thickness are on the vertical and
horizontal axes, respectively.Once again, a cylinder with the same geometry was
constructed. As for the particle gun, it fired 1,000
16O nuclei with an energy of 200 MeV/nucleon. In
Fig. 5, the 16O beam’s energy loss and the target’s
thickness are on the vertical and horizontal axes, re-
spectively.

Clearly, there is a linear relationship between the
beam’s energy loss and the target’s length, regardless
of the particles that are fired. In addition, the graphs
have slopes of approximately 0.03 MeV/mm and 2.17
MeV/mm, respectively.

In Section 3.1, the theoretical mean energy rates
had been calculated merely through dimensional
analysis (it is known that the unit is MeV · cm2 / g),

Figure 4: 1,000 protons were fired with an energy of
200 MeV/nucleon.

but they can be calculated more formally with
Bethe’s Equation (Eq. 8). This equation allows one
to find the expectation value of the energy loss rate
of a moderately relativistic charged heavy particle.

〈
−dE

dx

〉
= Kz2

Z

A

1

β2

(
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

)
(8)

For protons and 16O nuclei, the following are rele-
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Figure 5: 1,000 16O nuclei were fired with an energy
of 200 MeV/nucleon.

vant to applying the equation:

• K: the coefficient of -dE/dx (0.307075 MeV ·
cm2 / mol)

• z: the charge number of the incident particle (+1
for a proton; +8 for an 16O nucleus)

• Z: the atomic number of the absorber (1 for
LH2)

• A: the atomic mass of the absorber (1 g/mol for
LH2)

• β: the relativistic factor (0.42, the ratio between
the velocity of a proton, or an 16O nucleus, and
the speed of light; this was calculated using Eqs.
9 and 10).

γ =
mc2 + T

mc2
(9)

β =

√
1− 1

γ2
(10)

The rest of the equation can be ignored for the sake
of simplicity.

With Bethe’s Equation, a 64:1 ratio between the
theoretical mean energy losses of an 16O nucleus and
a proton is derived. This ratio is determined by the
charge ratio of the particles in question. More specif-
ically, an 16O nucleus has a charge of +8 while a
proton has a charge of +1, so when these particles’
charges are squared and their ratio is calculated, the
result is 64:1.

3.4 Reconstruction Method for 16O
Beam

In Geant4, the experimental setup of the SAMURAI
proposal can be visualized on an xz-plane as shown
in Fig. 6. Seeing that the target’s front and back
ends lie at -4775 mm and -4625 mm on the z-axis,
respectively, 4775 must be added to the z-coordinate
at which the beam meets a proton inside the tar-
get. When this sum is multiplied by the slope of the
graph in Fig. 5, the energy deposition correction fac-
tor (CF) is as follows:

Eloss correction factor = 2.17(z + 4775). (11)

Now, this correction factor can be incorporated into
the missing mass method.

Figure 6: The experimental setup in the Geant4 sim-
ulation. The LH2 target is the white rectangle con-
taining the pink rectangle and is bisected by the z-
axis.

The missing mass method, as it is used in Geant4,
is illustrated with the following steps:
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1. Create counters for the 15N nuclei and the pro-
tons. Each counter will increment by one if
Geant4 examines the secondary particles – par-
ticles created through secondary interactions –
and finds that their respective Particle Data
Group Codes (PDGCodes) match that of 15N
nuclei and protons.

2. Ignore all events in which the 15N nuclei counter
is not one or the proton counter is not two.

3. Initialize and declare the three-dimensional vec-
tors for the Lorentz momenta of the protons,
which are found after several steps. Every time
one 15N nucleus and two protons are counted,
the 16O (p, 2p) counter increments by one. As
a result, Geant4 iterates through the initial mo-
menta of the secondary particles, and when two
secondary particles’ PDGCodes match that of a
proton, the momenta of these protons are as-
signed.

4. Create a three-dimensional vector for the z-
coordinate of the 16O beam prior to the event
of interest. Compute this z-coordinate by pass-
ing the Secondary Data array to the GetMC-
TruthVertex function.

5. Combine the kinetic energy of the beam imme-
diately before the 16O (p, 2p) reaction with the
rest mass energy of the beam.

6. Subtract the energy loss correction factor from
the sum in Step 5; the result is the total energy
of the beam the moment before the reaction.

7. Substitute the total energy of the beam and the
rest-mass energy of the beam into Eq. 7, with
c = 1.0, to calculate the total momentum of the
beam.

8. Set the rest-mass energy of the proton equal to
the energy of the target.

9. Substitute the momentum of proton 1 and the
rest-mass energy of a proton into Eq. 6 and cal-
culate the energy of proton 1. The same applies
to proton 2.

10. Substitute all of the above variables into Eq. 5
to calculate the excitation energy of the current
loop.

11. Add this excitation energy to the variable that
holds the sum of the excitation energies in each
loop.

12. When the for loop is finished, the sum of the
excitation energies is divided by the 16O (p, 2p)
counter to yield the mean excitation energy of
15N.

4 Results & Analysis

Over 183 events, a mean excitation energy of 7.391
MeV is calculated for 15N [1].

With ROOT, a data analysis software, histograms
of the excitation energy distributions can be gener-
ated.

Fig. 7 illustrates the excitation energy distribu-
tion over the length of the target, while Table 3 sum-
marizes the data as the total number of events, the
mean excitation energy, and the standard deviation
and standard error of the excitation energy.

Figure 7: Distribution of Reconstructed Excitation
Energy of 15N Over Whole Target (MeV)

Figs. 8-11 display the distributions of the exci-
tation energies for the front and back halves of the
LH2 target when the energy loss correction factor is
included and when it is not. The front half is from
the end of the target closest to the particle gun (0
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Figure 8: The beam’s energy loss is considered
for the front half of the target.

Figure 9: The beam’s energy loss is considered
for the back half of the target.

Figure 10: The beam’s energy deposition is ig-
nored for the front half of the target.

Figure 11: The beam’s energy deposition is ig-
nored for the back half of the target.

Table 3: Reconstructed Excitation Energy of 15N
Over Whole Target (MeV)

Events 183

Mean 7.391

Standard Deviation 4.618

Standard Error 0.341

mm) to the midpoint of the target (75 mm), while
the back half is from the midpoint to the other end
of the target (150 mm). Table 4 not only includes
the same types of data as Table 3 for the front and
back halves of the target, but also presents the differ-
ence in the means of these halves, the uncertainties
associated with these differences, and the significance
ratios.

Before creating the Geant4 simulation, it was ex-
pected that the mean excitation energy of 15N should
not depend on the location of the events inside the
LH2 target. To assess whether there is a significant
difference between the front and back halves, both
with and without the correction factor, the differ-
ences in means is divided by the uncertainties to yield
the significance ratios. Since these ratios are less
than 2, the observed differences between the front
and back halves, whether or not there is a correction
factor, are likely statistically insignificant. Addition-
ally, when the correction factor is implemented, the
mean excitation energy decreases by 0.581 MeV and
0.888 MeV for the front and back halves, respectively.
These decreases indicate that the correction factor is
functioning as intended.
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Table 4: Reconstructed Excitation Energy of 15N for Front & Back Halves (MeV)

Front Half, CF Back Half, CF Front Half, no CF Back Half, no CF
Events 95 88 95 88
Mean 6.185 7.248 6.766 8.136

Standard Deviation 3.306 4.527 3.709 5.414
Standard Error 0.339 0.483 0.381 0.577

Difference in Means -1.063 -1.370
Uncertainty 0.590 0.691

Significance Ratio 1.802 1.983

5 Discussion

Using a Geant4 simulation, the reconstruction
method for an 16O beam was created. This method
aims to accurately reconstruct the excitation energy
of 15N following an 16O (p, 2p) reaction with the
missing mass method in mind. It also yields distri-
butions of the reconstruction excitation energy that
are independent of the position of the 16O (p, 2p)
reactions. However, this interpretation is dubious,
given that the total number of events is as low as 88.

It is also important to note that the reconstruc-
tion method for an 16O beam provides two sets of
data: (1) the mean excitation energy of 15N; and
(2) the true excitation energy for each event. While
the mean excitation energy of 15N can be determined
through Geant4 simulations, the true excitation en-
ergy for each event can be extracted from the Root
histograms. In the future, it would be favorable
to test the accuracy with which the reconstruction
method calculates the excitation energy. This test
entails a comparison between the reconstructed exci-
tation energy of 15N and the true excitation energy
for each event.

To further improve this method, one should not
calculate the energies of the protons. Instead,
he or she could measure these quantities with the
CATANA and STRASSE detectors.
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