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Abstract 

The primary goal of our research was to take a second look at simplified models of 

Earth’s magnetic field -- in particular, one that displays chaotic reversals. We 

analytically and numerically analyzed a nondimensionalized version of the set of 

coupled ordinary differential equations governing Rikitake’s simplified double dynamo 

model for the Earth’s magnetic field. Additionally, we created phase diagrams similar to 

those of Kono’s to discover new peculiarities in the behavior of solutions’ dependence on 

parameters. The result of which demonstrates the unpredictable behavior of even simple 

models of the geomagnetic reversals. 

 

Introduction 

Any information that we have gleaned about the history of the geomagnetic field to any 

considerable time scale comes from evidence located inside the earth’s crust. Such 

evidence indicates a chaotic history of dipole dominated magnetic fields with aperiodic 

reversals of polarity (Glatzmaier and Coe 2007). It was our primary concern to analyze a 

simplified model of such reversals rooted in electromechanical dynamics.  

  

Figure 1 - Rikitake Dynamo (Yajima and Nagahama 2009) 



Cavin 2 
 

 

Finding a mathematical model that accurately describes the behavior of Earth’s 

magnetic field is a high priority among many geological scientists. A full analysis using 

magnetohydrodynamics provides a fairly complete approach. The downside to this 

approach is laborious numerical calculations coupled with a persistent need for 

simplifying assumptions of the conditions in the outer core. It was with these 

considerations in mind that we decided instead to analyze Rikitake’s Double Dynamo, a 

simplified yet effective model of Earth’s magnetic field in that it displays the 

approximate feedback, electromechanical, and reversal properties of the Earth’s 

magnetic field (Rikitake 1958). Figure 1 shows the schematics of Rikitake’s Dynamo. 

Although not explicitly stated in the equations, the magnetic field strength is 

proportional to the current running through each loop (proportional to the sum of the 

two currents in the simplifying case that the loops are along the same axis, but are 

noninteracting). The direction of the field is determined by the sign of the sum of the 

currents. The governing equations are as follows. 
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  ,   ,   , and    are the currents and angular velocities of the two loops and two 

rotating disks respectively and also the dependent variables. The current being of 

particular interest as alluded to earlier.   is the self-inductance of the loops,   is the 

resistance of the loops,   is the mutual inductance of the loops,   is the driving torque, 

and   is the moment of inertia of the disk about its rotation axis. Note that all of these 

values were assumed to be the same across the two coupled systems.  

 

It isn’t enough for a mathematical model to fit certain physical behaviors though. There 

should also be some sort of physical inspiration for the model. Here, we simply take 

charged ions moving through conductive packets of molten metal driven by convection 
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and Coriolis forces in complex ways and reduce that to two rotating disks attached to 

loops of wire that interact in an electromagnetic feedback system. 

 

It was our goal to perform a parameter dependent analysis of solutions to this particular 

set of ODEs in order to get a deeper insight into the behavior of this seemingly simplistic 

system. Previous analysis of Rikitake’s model has been performed fairly extensively in 

the past. Hoshi and Kono used computational methods in order to create a phase 

diagram of solutions.  

 

 

Figure 2 - Phase Diagram (Hoshi and Kono 1988) 

 

We endeavored to create a higher resolution mapping of solutions. In doing so, we 

managed to discover some new previously undiscovered phenomena in solutions of 

certain parameterization.  
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Analytical  Methods 

The logical first step to analyzing parameter dependence of a set of differential 

equations of this form is to attempt to create a nondimensionalization. For the 

numerical portion of the research, we borrowed Cook and Robert’s 

nondimensionalization.  

 

  ̇    ̇      (5) 

  ̇    ̇          (6) 

         (7) 

 

Note that the system of four differential equations is reduced to that of three with the 

simple observation that the right-hand side of (3) equals the right hand side of (4). The 

implication being that the separation between disk velocities is constant.   is therefore 

the difference between the angular velocities of the first and second disks. The current is 

measured in units of the steady state current of (3) and (4). The time is measured in the 

geometric mean of the natural electric and mechanical time scales.   is a parameter that 

is equal to the square root of the ratio of the mechanical and electric time scales.  

 

When we let 

            , (8) 

The steady state solutions are                    for     where the plus/minuses 

are taken together. Since   is entirely determined by , a phase diagram can be made 

that maps the  -  dependence of solutions (see figure 2).  

 

Linearizing about the steady states yields eigenvalues of  

        √         √      . (9) 

Two purely imaginary eigenvalues betray little information about solutions – implying 

an oscillatory nature. The negative real value implies some stability for solutions along 

the associated eigenvector.  
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Numerical Methods 

In order to create our own phase diagram, we needed to generate solutions to our ODEs. 

Due to nonlinearity inherent in each of equations (1)-(4), analytical solutions are 

difficult if not impossible to come by. Linearizing about the steady state solution only 

gives so much insight into the behavior of solutions. The natural solution to this 

problem is a numerical approach. 

 

We implemented a 4th order Runge Kutta ODE approximation method using MATLAB 

2010a. An array of   and   values are taken as inputs and the program saves images of 

the plots of the solutions in   -   phase space. The initial conditions being set 

sufficiently far away from the steady state solutions and the solutions truncated as to 

give a good idea of the long term behavior of solutions. We solved the initial value 

problems up to 500 time-scale units, truncating solutions to the last 200 units. We then 

looked through the individual images and classified the solutions broadly as chaotic or 

periodic.  

 

Results and Discussion  

The highest precision of parameter adjustment we did was a range of   from 1 to 6 and a 

range of   from 0 to 8 – just like Hoshi and Kono’s phase diagram. Some of the typical 

solutions found are listed below followed by our phase diagram. 
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Figure 3 – Periodic Solution without Reversing 

 

Figure 4 - Periodic Solution with Reversing 
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Figure 5 - Minimum Entropy Solution 

 

Figure 6 - Chaotic Solution 
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Figure 7 - Ambiguous Solution 

 

Figure 8 - Our Phase Diagram 

In terms of solutions that give a general idea of the characteristics of geomagnetic field 

fluctuations, the chaotic solutions are the most accurate. The following is a 

characteristic plot of the sums of current versus time for one such chaotic solution. 
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Figure 9 - Chaotic Solution Evolution in Time 

Interestingly, there are clear oscillations in between reversals which are indeed another 

characteristic of Earth’s magnetic field. To claim that this model accurately describes 

such oscillations is a stretch since the amplitude of such oscillations is far too great in 

this model. The model does however nicely capture the chaotic nature of reversals.  

 

Figure 10 - Overlaid Phase Diagrams 
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Overlaying the two phase diagrams (Figure 10) shows a general agreement between our 

results and Hoshi and Kono’s. Two observations of interest are to be had here however. 

Firstly, it seems as if the boarders between periodic and chaotic solutions in parameter 

space aren’t quite as smooth as previously thought. The perhaps more interesting 

observation is that the lower right hand corner has a region of chaotic solutions 

unmarked by Hoshi and Kono. See Figure 7 for a typical example. Unlike other chaotic 

solutions, solutions in this ambiguous region do not display reversals of current. This 

indicates that despite being chaotic, they’re probably not very good parameters for an 

accurate model of the geodynamo. The main significance in these two observations is 

that they indicate that even a very simplified model of the geomagnetic field can have 

unexpectedly complicated bifurcation curves in parameter space.  

 

Further Research 

Looking to the future, we are interested in further exploring the phase space of this 

particular set of ODEs. Specifically, we think that the bifurcation curves should be 

examined further. By upping the resolution and localizing the analyzed portions to those 

of specific interest, computation time can be reduced while useful data output increases. 

Additionally, further research into the non-reversing chaotic region should be done. 
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Steady state solution                   (15) 
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During the duration of our research, we developed a novel nondimensionalization of 

Rikitake’s governing ODEs. The governing equations are equations (8)-(10). 

Aesthetically different from (5)-(7) in that only one equation has the parameter   

instead of two. Another aesthetic difference is that the steady state solutions are now 

parameterized by   alone. The motivation behind this nondimensionalization is making 

current and angular velocity both measured in characteristic units. Time is measured in 

the inverse unit of characteristic angular velocity which is logical in the mechanical 

sense at the very least.   is perhaps less significant in this nondimensionalization 

though since it has no known inherent physical significance like Robert and Cook’s did. 

Little numerical analysis has been performed with this particular 

nondimensionalization though. Perhaps analysis will provide a smoother more intuitive 

phase diagram. Alternatively, since   and   are dependent on each other in both 

nondimensionalizations, additional phase diagrams can be created by examining  -  

parameter space instead. Such a novel approach may yield more information about the 

parameter dependence of solutions to the Rikitake Dynamo equations and the type of 

solutions.  
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