New role of arginine metabolism in plant morphogenesis identified
Insights into the evolution of plant body architecture
Overview of the press release
Arginine metabolism boosts to make a plant body complex, according to new research by a collaborative team from Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology (NIBB), RIKEN, Rikkyo University, Toyohashi University of Technology, Yamagata University, Chiba University, Hokkaido University, and University of Tokyo in Japan. The findings, now online in Cell Reports, might lead to a new understanding of amino acid metabolism with a specific role in plant morphogenesis.

Figure: A colony of Physcomitrium patens with gametophore shoots
Filamentous protonema tissues (pale green) exhibit two dimensional growth to form a mat-like structure. On the other hand, gametophores (dark green) produce leafy shoots as a result of three dimentional growth.
In the current study, they showed that arginine metabolism is a key for gametophore formation in Physcomitrium patens and identified its underlying core pathway mediated by transcriptional co-activators ANGUSTIFOLIA3/GRF-INTERACTING FACTOR1 (AN3/GIF1) family signaling. These findings have advanced our understanding of the mechanism, by which the shoot system was established via metabolic reprogramming during the evolution of plants. More generally, this study refines the emerging concept in biology that developmental and metabolic processes influence one another for chemical force that facilitates growth, morphogenesis, and maturation. “Future work to clarify what kind of metabolite is produced from arginine in gametophores promises to unravel the physiological base of this phenomenon” explained Kawade.
To read the full press release, please visit the ExCELLS website.
Professor Hirokazu Tsukaya (Department of Biological Sciences, Graduate School of Science) participated in this research.
Publication details
Journal Cell Reports Title Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens Authors Kensuke Kawade, Gorou Horiguchi, Yuu Hirose, Akira Oikawa, Masami Yokota Hirai, Kazuki Saito, Tomomichi Fujita, Hirokazu Tsukaya DOI https://doi.org/10.1016/j.celrep.2020.108127
― Office of Communication ―