Science is a relentless pursuit of universal truths in Nature driven by the curiosity of individuals. Scientists ask: How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws? How did life begin? How did life evolve? How do cells in the brain work together to make the human mind? Is there life beyond the Earth? The list of such fascinating questions goes on. The School of Science at the University of Tokyo invites you to join this intriguing quest to find answers to these questions. At the School of Science we train you to learn and study science and provide exciting opportunities to conduct your own scientific research. You will experience the joy of understanding and gaining new knowledge and making discoveries through the variety of Ph.D. programs we offer. In the School of Science we strive to offer world-leading research programs in both traditional and interdisciplinary fields. Our programs are highly rigorous and demanding, but you will find them rewarding.

Science has become an integral part of everyday life. You benefit, and, indeed, cannot escape, from the outcomes that Science has produced. Today, science exerts great impact on society in the same way politics, economics and culture do. Science is expected to play a major role in problem solving for many difficult societal issues. For instance, energy and environmental issues are major challenges that Science faces today. At the School of Science we train you to apply scientific knowledge and experience to solve important real-life problems and to assess their impact within a wide context. The School of Science has introduced many programs to enhance academic cooperation with industries and to promote social application of scientific knowledge and methods.

In Science, there are no barriers of gender, national borders, religion or language. The School of Science considers respect for cultural and ethnic diversity on campus as one of its most important core values. The School has included in its educational objectives enhancing cross-cultural interactions with diverse peers in order to stimulate the minds of students to make their academic work more professional and creative. The School offers a variety of internationalization programs designed to promote mutual understanding through exchanges of views between Japanese students and researchers and their counterparts having non-Japanese backgrounds about their research and scientific developments. We offer programs to foster wider perspectives and maintain the competitive edge required for the next generation of leaders by bringing together a multiplicity of experience and interests. We strive for academic excellence through its demand for ever-increasing diversity. Indeed, our commitment to diversity is stronger than ever.

Finally, let me offer a few words of advice to you, prospective graduate students. Science is truly intriguing. It is a life-long activity full of excitement. All you need to do is aim high and work hard. We invite you to join us.

Hiroaki Aihara, Dean
Our university was established in 1877 as the first national university in Japan with the name “Imperial University.” This was changed to “Tokyo Imperial University” when Kyoto Imperial University was established. The name was changed to the present “University of Tokyo” after World War II. The full Japanese name of our university, 東京大学 (Tokyo Daigaku) is commonly contracted to 東大 (UTokyo) in everyday usage.

The undergraduate Faculty of Science was established at the same time as the University. In accordance with the reforms of the postwar education system, the Graduate School of Science was established as an appendage of the Faculty of Science in 1953. In the early 1990s the Faculty of Science was reorganized as the School of Science, which includes both undergraduate and graduate programs in science, with institutional emphasis on the latter. The School provides its students with outstanding opportunities for intellectual development and the acquisition of professional knowledge and skills. At present, the School offers master’s and doctoral programs in six departments: Physics, Astronomy, Earth and Planetary Science, Chemistry, Biophysics and Biochemistry, and Biological Sciences. These programs are run in close cooperation with other research institutes within the university and with some external institutions. The School also offers undergraduate education in Mathematics and Information Science, but undergraduate education is not discussed further in this Prospectus. The School has a world-class faculty of more than 260 full-time professors, associate professors, and research associates, and a diverse student body of more than 1,350 graduate students. Students and researchers from many disciplines, backgrounds, and regions collaborate together on multidisciplinary study and research. The School is committed to accepting international students proactively, and intends to expand the number of lectures delivered in English. The alumni of the School include three Nobel laureates in Physics: Leo Esaki (1973 laureate), Masatoshi Koshiba (2003), and Yoichiro Nambu (2008).

The School of Science will conduct education and research to further understand the truths of nature, to expand and develop the frontiers of knowledge, and to communicate such new knowledge to future generations.

Mission
The School of Science will conduct education and research to further understand the truths of nature, to expand and develop the frontiers of knowledge, and to communicate such new knowledge to future generations.

Education
The School of Science will educate young people who will lead the next generation of science and who will contribute to the continuous and peaceful progress of human society by solving new research problems.

Fairness
The School of Science will hold fairness and openness to be paramount in all personnel and other organizational decisions, and will maintain the highest standards of education and research through rigorous external evaluation.

Non-discrimination
Consistent with the ideals of science, the School of Science will not discriminate on the basis of gender, nationality, race or religion, and will respect academic freedom in education and research.

Note: In April 2014, the Departments of Biophysics and Biochemistry, and Biological Sciences will be merged into one department.
Program for Leading Graduate Schools

The Program for Leading Graduate Schools, sponsored by MEXT (the Ministry of Education, Culture, Sports, Science and Technology) and the JSPS (Japan Society for the Promotion of Science) is intended to become a driving force behind drastic reforms in applicable areas of graduate school education at leading educational centers. This program seeks to foster leaders who can play global roles across a wide spectrum of academic, corporate and governmental sectors. The School of Science has established four degree programs under this program since the 2012 academic year. For more information about the programs, please visit the websites cited below.

Advanced Leading Graduate Course for Photon Science (ALPS)
http://www.s.u-tokyo.ac.jp/en/current/ALPS/

The Advanced Leading Graduate Course for Photon Science (ALPS) is run through the joint efforts of the Graduate School of Science and the Graduate School of Engineering of the University of Tokyo. The objective is to train students attaining Doctor of Philosophy to have wide-ranging interdisciplinary viewpoints and the ability to apply their knowledge to real-world problems, by conducting research in several cutting-edge research fields of fundamental science, joined together by one common theme: frontier photon science. The Materials Education Program for the Future Leaders in Research, Industry, and Technology (MERIT) is operated through the collaboration of a number of departments: Applied Physics, Electrical Engineering and Information Systems, Materials Engineering, Applied Chemistry, Chemical System Engineering, and Chemistry and Biotechnology at the Graduate School of Engineering: Physics and Chemistry at the Graduate School of Science; and Advanced Materials Science at the Graduate School of Frontier Sciences. The principal objective is to shape outstanding students into leaders with holistic perspectives and high levels of creativity who are able to work in leadership roles in industrial, academic, and governmental sectors throughout the world. Program graduates will have strong expertise rooted in their experience of advanced material science research, and will be able to adopt a holistic and flexible approach to work across disciplines, based on a solid platform of integrated material science.

Graduate Program for Leaders in Life Innovation (GPLLI)
http://square.umin.ac.jp/gplli/

Life innovation involves multiple factors in a sophisticated way, making it extremely difficult to be achieved by a single discipline and requiring collaboration and integration of multiple disciplines. Therefore, to realize life innovation, it is necessary to produce leaders who have solid bases in their specialty and simultaneously have broad perspectives, communication skills and deep insights to integrate results and human resources from multiple related disciplines. The aim of this program is to provide selected graduate students with various opportunities to gain the following three talents;

1. A high degree of specialty and broad systematic knowledge
2. Language skills (including English) and communication skills
3. Insight required for leaders (originality, foresight, leadership and a sense of morality)

The Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP)

The Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP) is part of the MEXT “Leading Graduate School Doctoral Program,” which aims to revolutionize graduate school education by developing world-class, quality-controlled academic degree programs, where learning is achieved with no walls separating academia from industrial and governmental sectors. With coherency between the Master’s and Doctoral programs, this program aims to turn competent students into perceptive and creative global leaders in all realms of industry, academia and the government.

The FMSP course is provided through the joint efforts of the Graduate School of Mathematical Sciences, Department of Physics and the Department of Earth and Planetary Science of the Graduate School of Science together with Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo. We hope to establish a new interdisciplinary learning environment based on training in advanced mathematics.
That's why I came to UTokyo

Voices of international students

Q1: Why did you choose UTokyo?

Aaron Bell

America — Enrolled Master’s program in Astronomy in April 2013

1 UTokyo appeared as a very lucky and unexpected opportunity. During my last years of undergrad I started looking for graduate schools. I found UTRIP by chance and noticed that one professor was involved in research related to my undergrad project. Being on my own for the first time in a new world during UTRIP helped me grow up. I had many difficult moments in Tokyo, and sometimes felt very frightened. The family atmosphere of UTRIP helped me deal with those moments and somehow even the challenges of Tokyo seemed an adventure. My fellow international interns, and the UTRIP programming, truly brightened my summer at Todai and helped me get the most out of the lab, and my spare time. The expertise and research activity within the astronomy department was also inspiring, when paired with human network of UTRIP. When I unexpectedly received the MEXT scholarship I chose to return to Tokyo that autumn as a Masters student to let the adventure continue.

2 I don’t know what’s next! UTokyo has helped me realize my strengths and weaknesses and has shown me many possibilities. It has shown me which research topics I really love, like astrophysics, and that I work best with a hands-on element in my research. I learned the value of a “family” atmosphere in my study/workplace. I may pursue a PhD back in America or Europe or elsewhere in Japan, to complement my experience in Tokyo.

3 It’s very easy to become isolated if you are not proactive. Fortunately, Tokyo has a lot of chances to connect with others. Make friends and keep up with them! You’ll need that foundation for what can be an exhausting, but rewarding life in Tokyo. Don’t keep your difficulties to yourself. Someone else is certainly dealing with the same thing. Be vocal about what you want from your program. If your advisor hears your goals and knows what type of life experiences you want to create, he or she will probably be happy to help you. Keep up with your research, but don’t challenge yourself too much! The happier you can be here, the better your research will be.

Q2: What are your future goals?

Kyle Mede

Canada—Entered Master’s program in Astronomy in October 2011

1 Throughout my undergraduate degree in Canada, I made many Japanese friends and grew very fond of the culture and language by taking part in our university’s Japan Club. When looking into graduate schools to apply to, a friend suggested I look into UTokyo. It became a dream come true to not only attend the top university in Japan, but to live and experience the country for 2 years. It was the best decision I ever made, as the staff, professors and fellow graduate students are all amazingly friendly and knowledgeable. It is a fantastic environment to reach your highest goals in research. My experience at UTokyo in the Masters program has even led me to decide to stay here for another 3 more years for the PhD program, working on a very interesting project in conjunction with Princeton University.

2 My next immediate goal is to build up my international collaborative network to improve my chances and choices for post doctoral work. After which I hope to start a career as a professional researcher at either a university or top class astronomical observatory.

3 Taking some basic Japanese courses ahead will make your life more comfortable and fun. During my undergraduate I added a few intensive Japanese language classes to my 3rd and 4th year school schedule and have benefited immensely from them. If you have the opportunity, apply to the UTRIP to see for yourself what research at UTokyo is really like first hand.

Phua Jia Han Eunice

Singapore—Entered Master’s program in Chemistry in April 2013

1 After my participation in UTRIP (University of Tokyo Research Internship Program) by the School of Science, UTokyo has been my choice of school for graduate studies! With the knowledgeable professors, helpful seniors and resourceful laboratories, coming back for my Master’s program has proved to be a right decision. Furthermore, like during the internship program, international students are always looked after very well, and there are many people and ways that we can ask for advice, for anything in our everyday lives.

2 I am currently in the process of applying for MERIT (Materials Education Program for the Future Leaders in Research, Industry, and Technology), which is a collaboration between different departments and schools in UTokyo. If successful, I would be in UTokyo for 5 years and graduate with a UTokyo doctorate degree.

3 For newcomers to UTokyo, I congratulate you for making a decision that you would not regret! Life as an international student is never easy, but your experience in UTokyo will definitely shape you to be ready for any challenges in the future. Help is always not far away, everyone will be most willing to help you if you ask, be it your professor, lab mates, staff at the International Liaison Office etc. Be open to new things and you will be able to gain the most out of your few years here in UTokyo!

Q3: What advice do you have for newcomers to UTokyo?

Thanthip S.Krasienapibal

Thailand—Entered Master’s program in Chemistry in April 2011

1 When someone thinks of studying in Japan which has advance technologies, I believed that most students dream to come to UTokyo and one of those is me. UTokyo has not only prestigious program in Sciences but also has advanced research along with high performance equipment which promote the quality of research, moreover, lots of specialists and professors always support and encourage students to increase our own potential and achieve our goals. Concentrated research along with these factors will help you to drive your research and move us to a new period of technology. Besides academic, the environments are so good and people in UTokyo are very friendly and knowledgeable. Thus, I would like to pursue my graduated time here.

2 My future goal is to contribute my research and knowledge to the society no matter in university, institutes or company. No matter I work in Japan or my country, I would like to make a collaborative research and keep this great connection with UTokyo which I believed it will lead to globalized technologies in the future.

3 UTokyo is really great place to study and experience many things. For international students, there are always supports and information center. Llife in Japan will be wonderful with many interesting activities. Japanese is very fun and worth to learn. It will also help you to understand Japanese people and live here easily. For newcomers, UTokyo is welcoming you to come to conduct a valuable research. To prepare your basic knowledge and researches spirit is my advice to spend your perfect re-search time here.
Particle Physics

Particle physics quests for the fundamental understanding of matter, forces, and the universe. Currently, we have a successful theory, the Standard Model, whose predictions surprisingly agree with the results of high-energy experiments so far. However, we believe that the Standard Model is not the most fundamental theory and that there exists an ultimate theory which unifies all forces (electromagnetic, weak, strong and gravitational ones). In cosmology, puzzles also exist: the nature of dark matter and dark energy, the origin of matter-antimatter asymmetry, the mechanism of inflation, etc. Particle physics aims to solve these mysteries. There are both experimental and theoretical activities in our university. The theory group covers phenomenology, string theory, mathematical physics, and cosmology. Experimental colleagues are working on the LHC, the energy frontier collider, which made a great discovery of Higgs boson. Other experimental activities on dark energy, dark matter, neutrinos, CP violation, and International Linear Collider (ILC) are also ongoing.

Theoretical Condensed Matter Physics

The theoretical condensed-matter physics group comprises six professors. We cover a wide range of materials and phenomena that include strongly-correlated electron systems exemplified by the high-Tc superconductor, superfluid helium, quantum Hall systems, photo-induced non-equilibrium physics, and physics of surfaces. We explore new physical principles by combining high-quality exotic materials with unique advanced techniques. The theoretical condensed-matter physics group comprising four professors and covers a broad range of topics from fundamental aspects to realistic analysis of diverse materials. Among the main interests are many-body effects in correlated electron systems and spin systems in and out of equilibrium, such as superconductivity, magnetism, fractional quantum Hall effect. Another pillar is the first-principles electronic structure, including the "beyond LDA", in ordinary and extreme conditions. Active collaborations between experimental and theoretical groups are ongoing.

Astrophysics

The theoretical astrophysics group is actively working on a variety of broad topics in astrophysics and cosmology, including observational cosmology, numerical simulations of the first generation objects, and formation and evolution of exoplanets. Our department also has five groups working in experimental/observational astrophysics. One is searching for gravitational waves with the up-coming laser interferometric detector, KAGRA. Another is trying to directly detect dark matter particles (neutralinos and solar axions); yet another is conducting millimeter- and submillimeter-wave observations focusing on star formation and chemistry of interstellar matter; and the remaining two are using X-ray space missions to study galaxy clusters, black holes, neutron stars, cosmic nucleosynthesis, and particle acceleration.

Nuclear Physics

The nuclear physics group studies quantum many-body systems made of the strongly interacting constituents of quarks and nucleons, such as quark-gluon plasma formed at RHIC/LHC and exotic nuclei created at RIBF. In this group, we seek for unique properties and dynamics under extreme conditions of high temperature/density and high isospin asymmetry, which are predicted through establishing new experimental techniques and theoretical treatments, respectively. The group also engages in interdisciplinary research that extends to particle physics, atomic physics and astrophysics. CPT test, the origin of hadron mass and the origin of elements are examples.

Graduate departments
Graduate departments

This group covers observational astronomy at optical and infrared wavelengths, ranging from observational cosmology, the formation and evolution of galaxies and galaxy clusters, stellar evolution, star-formation, and circumstellar physics to exo-planets and their formation based on observations with the Subaru telescope and other ground-based telescopes. Another major part of the activities of the group is the hardware development of optical and infrared instruments as well as large telescopes, such as the Tokyo Atacama Observatory (TAO) in Chile, which uses the latest technology.

Optical and infrared astronomy

This group covers a wide range of research fields of theoretical astronomy, including solar/stellar seismology, stellar astrophysical fluid dynamics, theory of rotating/magnetic stars, evolution of binary systems, formation of planetary systems, supernova explosions, gamma-ray bursts, cosmic rays and high energy astrophysics, formation and evolution of galaxies, N body simulation, origin of elements, large scale structure, and cosmology.

Theoretical astronomy

The major fields of observational radio astronomy this group studies include the formation and evolution of galaxies, active galactic nuclei in galaxy clusters, interstellar physics in our galaxy and other galaxies, the center of our galaxy, and star and planet formation. This group is also playing a leading role in the hardware development of radio instrumentation, including that for the Atacama Submillimeter Telescope Experiment (ASTE) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and that for very long baseline interferometry (VLBI) with ground based radio telescopes and satellites.

Radio astronomy

The space astronomy group is working actively on space missions, such as the Suzaku (X-ray), AKARI (infrared), and Hinode (solar) satellite missions. The group’s major research topics range from solar physics, interstellar physics, star and planet formation, and high-density objects to black holes. The group is also involved in the hardware development of space telescopes and instrumentation for future space missions.

Space astronomy

Astronomy education and research at the University of Tokyo began in 1877 when the University was founded and the Department of Astronomy was established together with the Mathematics and Physics Departments in the Faculty of Science. Since then, UT’s Department of Astronomy has been at the forefront of astronomy education and research at both the undergraduate and graduate levels, and has produced many outstanding astronomers.

The astronomy courses develop graduate students to function later as front-line researchers and educators in astronomy and other fields and to play central roles in international and interdisciplinary research projects. Graduate students strive to develop a high level of expertise, a willingness to challenge new tasks, and the ability and sense to open unknown research paths. Fully mindful of these educational objectives, faculty members provide students with advanced training in astronomy to meet their needs as future researchers. Although the number of faculty members in the Department of Astronomy is small relative to other departments in the Graduate School of Science, it is large by global standards. In addition, the fields covered by the faculty constitute the largest astronomy graduate course in Japan, enabling it to provide astronomy education that is not available at any other universities.

Astronomy

http://www.astron.s.u-tokyo.ac.jp/index.html/en

Photo Credit: NAOJ
Earth and planetary science covers a wide range of fields, from study of the solid Earth, atmosphere and oceans, and surface environment, including the biosphere, to planets and minor objects in the solar system, as well as space beyond the solar system. Moreover, it covers a wide range of time scales, from the evolution of the solar system to the future of the Earth, and from billions of years to hours or less. Diverse research methods are required to study these diverse research fields, including field work, observation, laboratory experiments, chemical analyses, theoretical modeling, and simulation. Recent research aiming to understand the Earth and planets as a large-scale and complex system requires interdisciplinary research and education based on strong programs in the various disciplines of this field. Another important objective of the department is to contribute directly to society through participation in national and international programs of applied research in areas such as global climate change or mitigating catastrophic damage from earthquakes.

Atmospheric and oceanic science
This group studies oceanic and atmospheric phenomena on a wide range of space and time scales. Specific topics include small-scale turbulence, internal gravity waves in the troposphere, stratosphere and ocean, eddies and large-scale circulation of the ocean and atmosphere, and their coupling. Our aims are to deepen our understanding of the physical processes and, to the greatest extent possible, to enhance our ability to make predictions of these phenomena.

Space and planetary science
We study space physics, magnetospheric physics, observational planetology, comparative planetology, and planetary material science. Japan’s commitment and contributions to planetary/lunar/asteroid scientific missions are expanding, and this group’s members are playing an important role in these efforts.

Earth and planetary system science
This group aims to study the Earth as well as other planets as a single system comprising closely interacting multiple subsystems, with interaction times varying from seconds to billions of years and with spatial scales from the atomic scale to the distance between planets. We seek to understand the stability, variability, and evolutionary trends of planetary systems and surface environments.

Solid earth science
The “solid Earth” denotes the Earth’s crust, mantle, outer core (which is actually fluid) and inner core. These regions differ greatly both physically and chemically. This group seeks to reveal the complex structure, composition, state, and evolution of the Earth’s interior. Among the fields covered by this group are the structure and dynamics of the Earth’s interior, magma dynamics, global tectonics, dynamic geomorphology and earthquake physics.

Geosphere and biosphere science
This group studies the formation of geosphere materials, the evolution of the geosphere, the origin and evolution of life, and the fundamental processes of geosphere-biosphere interactions. This research is based on field observation, analysis of geological, mineralogical, and paleontological samples, and laboratory experiments.
Our graduate program covers advanced studies in all fields of chemistry, Physical, Organic, Inorganic, and Analytical Chemistry, and their interdisciplinary subjects through both lectures and frontier research projects. Students in the Master Course are encouraged to build a foundation of knowledge in the respective fields of chemistry and also develop experimental skills in their own field of expertise as well as other research fields.

Students in the Doctoral Course are strongly encouraged to conduct frontier research projects using their own knowledge and expertise in chemistry. In addition, those in the graduate program have various opportunities to develop teaching skills of chemistry via Teaching Assistantship of the undergraduate laboratory course and research activities in their own research groups. All lectures in our graduate program are given in English, aiming at exposures of all students to English-speaking scientific environment as well as encouraging international students to enroll in our graduate program.

We also hold various research seminars and symposia that invite domestic/international speakers who conduct world-top-class research programs, providing opportunities for students to learn “hot topics” of chemical research.

Chemistry

http://www.chem.s.u-tokyo.ac.jp/english/index.html

A variety of frontier research projects are being conducted in the three research groups in the physical chemistry division. The Structure Chemistry group focuses on the development of novel imaging and spectroscopy methods. The Solid State Physical Chemistry group designs and synthesizes novel functionalized molecule-based and metal oxides magnets. The Quantum Chemistry group investigates molecules interacting with ultra-short intense laser fields for fundamental understanding of interaction of molecules and light fields. The Catalytic Chemistry group aims at developing novel techniques of synthesizing metal clusters and investigates their physical and chemical properties.

In all the four groups, students master basic and advanced skills in experiment and theory and develop their understanding of essential aspects physical chemistry through their own research projects, group meetings, and daily discussions.

Physical and analytical chemistry

The research interests of this division encompass not only the traditional areas of inorganic and analytical chemistry but also cover many interdisciplinary areas including materials science and chemical biology. The Solid State Chemistry group develops novel electronic functional materials by making full use of the latest atomic layer-by-layer thin film technology. The Analytical Chemistry group explores new optical methods for molecular imaging, identification of biological molecules, and control of enzymatic activities to deepen understanding of biological systems. The Inorganic Chemistry group creates new molecules which alter their properties in response to external stimuli and develops newfangled electro- and photo-functional metal complex molecular wires, sheets and networks on surface. The Bioinorganic Chemistry group aims at developing novel biomimetic supramolecular architectures whose arrangement, spacing, and motion can be precisely controlled. Our common concept is to cultivate and enrich our knowledge of fundamental and applied chemistry through advancing the state-of-the-art in beautiful compounds, functional materials and analytical methods.

Organic chemistry

Four research groups are in the organic chemistry division, and the respective group conducts unique research programs in organic chemistry and interdisciplinary fields. The Synthetic Organic Chemistry group aims at developing environmentally friendly reactions with extreme efficiencies. The Naturel Product group conducts syntheses and analyses of natural products, enabling for visualizing cells and marine ecology. The Physical Organic Chemistry group challenges new reactions and materials that lead to novel principles of chemistry. The Bioorganic Chemistry group advances biosynthetic methodologies that produce novel bioactive compounds, and apply them to various topics in chemical biology. In addition to the regular group meetings in each group, this division holds a weekly Organic Seminar, and graduate students in this division present not only their own experimental results but also literatures of hot topics in the related fields.
Graduate departments

The Department of Biological Sciences will be reorganized in April 2014 by the merger with the Department of Biophysics and Biochemistry. Upon unification of the two former departments, the new Department of Biological Sciences establishes the Section of Advanced Photon Life Sciences, which deals with optical imaging microscopy and biology, quantitative metrology and biology, mathematical and theoretical biology, and biological processes involving light in a variety of fields of life sciences. This section aims at interdisciplinary research including physical and chemical approaches, and consists of four principal laboratories and several concurrent faculty members invited from other departments.

Originally the Department of Biological Sciences was established in April 1995 by the merger of three separate departments which specialized in zoology, botany and anthropology. An outstanding feature of the research in the department, as a whole, is its variety, as is evident from the presence of four diverse sections described below. The research being carried out in the department covers a wide range of studies at a variety of levels, from gene, protein, cell and organism to the disciplines of molecular biology, cell biology, developmental biology, ecology and evolutionary biology. Despite the wide variety of research topics, the department places emphasis on the basic principles of biology as a common theme. Graduate education in the department is conducted in part in collaboration with other departments and institutions, including the Marine Biological Station, the Atmosphere and Ocean Research Institute, Botanical Gardens of the University of Tokyo, and the National Science Museum.

Biological Sciences
http://www.biol.u-tokyo.ac.jp/english/index.html

The Department of Biological Sciences will be reorganized in April 2014 by the merger with the Department of Biophysics and Biochemistry. Upon unification of the two former departments, the new Department of Biological Sciences establishes the Section of Advanced Photon Life Sciences, which deals with optical imaging microscopy and biology, quantitative metrology and biology, mathematical and theoretical biology, and biological processes involving light in a variety of fields of life sciences. This section aims at interdisciplinary research including physical and chemical approaches, and consists of four principal laboratories and several concurrent faculty members invited from other departments.

Originally the Department of Biological Sciences was established in April 1995 by the merger of three separate departments which specialized in zoology, botany and anthropology. An outstanding feature of the research in the department, as a whole, is its variety, as is evident from the presence of four diverse sections described below. The research being carried out in the department covers a wide range of studies at a variety of levels, from gene, protein, cell and organism to the disciplines of molecular biology, cell biology, developmental biology, ecology and evolutionary biology. Despite the wide variety of research topics, the department places emphasis on the basic principles of biology as a common theme. Graduate education in the department is conducted in part in collaboration with other departments and institutions, including the Marine Biological Station, the Atmosphere and Ocean Research Institute, Botanical Gardens of the University of Tokyo, and the National Science Museum.

Zoological science
All living organisms share many principles in common as to gene expression and cellular metabolism. But why are animals so diverse in appearance, behavior, and mode of life? This group’s major goal is to seek answers to this fundamental question. Students learn the basics of physiology, developmental biology, endocrinology, biochemistry, molecular biology, etc., and then apply this knowledge to their research.

Anthropology
Research in physical/biological anthropology is conducted at the molecular, organismal, and population levels. Graduate students are engaged in research in molecular evolution, human genetics, morphological anthropology, population biology, and evolution of human social behaviors.

Plant science
Research in the plant science group covers studies on a variety of organisms, from microorganisms to flowering plants, and focuses on multiple hierarchical levels of life — genes, proteins, organelles, cells, tissues, organs, organisms and populations. The group aims at elucidating the mechanisms of living strategies by exchanging information with peers through these studies and attempts to understand the issues of growth, reproduction, differentiation, morphogenesis, response to environment, and ecology with the common language of modern biology.

Evolutionary biology
Evolution and biodiversity are fundamental properties of organisms. This group’s research and training are focused on evolution and biodiversity at the molecular, cellular, individual, and population levels. Their research covers a broad variety of topics in evolutionary biological research, including molecular and organismic evolution, phylogeny, development, Evo/Devo, ecology, speciation, and phylogeny. It also covers a wide range of taxa: fungi, algae, seed plants, sponge, Echinoderms, Chordates, and so on. The group cooperates closely with the National Museum of Nature and Science and several other universities for research and education.
In the present Department of Biophysics and Biochemistry, the objective of the lectures in the first year of the master’s degree course is to ensure that students acquire essential knowledge of biochemistry and molecular biology, including the principles of biological phenomena, so that they can use this knowledge for the preparation of their thesis and eventually solve the important biological problems that we face today. After successfully completing the doctoral course, students will be prepared and qualified to continue their careers as advanced researchers.

Structural biology
This group’s research aims to determine tertiary structures of proteins and nucleic acids that are crucial for biological processes. The group’s research interest is focused on: 1) how genetic code is translated into protein with high fidelity; 2) how membrane transporters selectively transport cations, sugars, metabolites, proteins and drugs and how their activities are regulated; 3) how the innate immune system protects humans from cancer.

Circadian clock and photosensory systems
This group is pursuing research on the molecular and cellular mechanisms controlling animal physiologies, with special interest in the circadian clock and photosensory systems, by using molecular and genetic approaches in mice, chicks and zebrafish. Their research topics include: 1) the molecular clockwork that generates a 24-hour oscillation and its resetting by external cues such as light and food; 2) the molecular link between the circadian clock and brain functions, such as memory formation in the hippocampus, and 3) visual transduction processes determining differences between rod and cone photoreceptor cells, and non-visual photosensory machineries controlling light-triggered physiologies such as body color change in teleosts.

Systems biology of cellular signaling
The ultimate goal of this group’s research is the understanding of mechanisms of signal transduction networks that regulate various cellular functions including cell-fate determination, synaptic plasticity, and insulin actions at the systems level. In these biological processes, the same input stimulation elicits distinct outcomes depending on temporal patterns of input, and the group is interested in the quantitative mechanisms of the encoding/decoding systems via signaling networks that underlie this processing. The group uses both experimental and computational approaches; thus they are trying to understand cellular processes in terms of Systems Biology.

Molecular behavioral genetics
This group aims at understanding the operating principles of the nervous system. For this purpose, the popular research model organism C. elegans, a soil nematode, is employed as a platform. On the basis of the knowledge of the entire connection diagram of 302 defined neurons in C. elegans, two complementary approaches are used: forward genetics, in which mutants with behavioral defects are isolated and analyzed, and reverse genetics, in which the gene of interest is destroyed. Examples of the questions the group is addressing are: 1) How does the nervous system control the movement of the animal as it steers its way? 2) What molecular components direct the switching of the behavior caused by learning? 3) How is behavior affected by interaction with other individuals?

RNA biology
This group studies the molecular mechanisms of RNA silencing in Drosophila. RNA silencing is gene silencing pathways mediated by small non-coding RNAs, including short-interfering RNA (siRNA), microRNA (miRNA) and Piwi-interacting RNA (piRNA). A small RNA functioning in RNA silencing is associated with Argonaute protein to form RNA-induced silencing complex (RISC) to silence target genes by either cleaving target mRNAs or inhibiting their transcription or translation. In Drosophila, five Argonaute proteins are expressed; each Argonaute binds to a particular set of small RNAs and functions in a distinct gene silencing pathway. The core schemes of gene silencing mediated by siRNA and miRNAs have been emerged. However, the mechanisms of germ-line specific piRNA-mediated gene silencing and piRNA biogenesis remain largely undetermined. Thus, we investigate to understand the molecular mechanisms of RNA silencing, especially those triggered by piRNAs and piRNA biogenesis in Drosophila.
Affiliated facilities of the School of Science

The Graduate School of Science also includes the units described on this page, which are collectively referred to as “affiliated facilities.” Many of the faculty members of these units participate in graduate education in the School through joint appointments in one of the six departments described above on pp.8-19.

Botanical Gardens (BG)

The University of Tokyo Botanical Gardens consist of the main garden in Tokyo, which originated as the Koshihakawa Medicinal Herb Garden of the Tokugawa Shogunate in 1684 and was annexed to the University in 1977, and the branch garden in Nikko which was established in 1902. Both gardens have excellent facilities and wild plant collections that contribute to research and education in plant sciences, and together they have been the leading research botanical gardens in Japan. Both are open to the public.

Research Center for Spectroscopy (RCS)

Current research at this center mainly covers ultrafast (picosecond to nanoseconds) Raman and synchrotron radiation spectroscopy. Spectroscopic observation of living cells or functional molecules such as ionic liquids is also being undertaken there. This research is related not only to chemistry but also to other scientific disciplines, including clinical diagnosis, and to the development of inter- and multidisciplinary sciences. The Center also maintains and manages various spectroscopic instruments for common use.

Geochemo Research Center (GCRC)

The Geochemo Research Center conducts fundamental research on Earth and planetary materials. GCRC research activities cover the chemistry of Earth and planetary materials and the behavior of fluids in volcanic and earthquake activity. To understand the behavior of hydrous volatiles in the Earth and planetary interiors, GCRC has been designated as a core research group for developing neutron reflection techniques at high pressure. State-of-the-art noble gas mass spectrometry developed by GCRC contributes to understanding of the evolution of the solar system and mantle dynamics. The Center also maintains and manages various geochromatic instruments for common use.

Marine Biological Station (MBS)

The Misaki Marine Biological Station (MIBS) is located in one of the world’s richest regions in terms of biodiversity. Taking advantage of the abundant marine life available there, extensive research and training are being conducted at MIBS. In 2009, the Center for Marine Biology, which is an interfaculty research organization of the University of Tokyo, was established at MIBS with the aim of creating a frontline research center in biology and promoting international collaboration.

Institute of Astronomy (IoA)

The Institute of Astronomy promotes both research and educational activities especially in the field of optical, infrared and radio astronomy. A wide spectrum of research is conducted at the Institute, from the origin of the solar system to the birth and death of stars, evolution of galaxies, and cosmology. The Institute operates a 1m infrared telescope at an observatory in Atacama, Chile and a 1.5m Schmidt telescope in Nagano Prefecture, as well as a 10m submitterlimator antenna in Chile in collaboration with the National Astronomical Observatory of Japan. Together with other large ground-based facilities and satellite observatories like Subaru and AKARI, the Institute is at the cutting-edge of astronomy today.

Center for Nuclear Study (CNS)

The Center for Nuclear Study (CNS) plays a central role in nuclear science research and education at the University of Tokyo. Moreover, CNS is a well-known institute in the international community of nuclear physics, and indeed serves as one of the major research and education centers in the field. The primary emphasis in its current research activities is on heavy-ion science. In close collaboration with RIKEN, where the major facilities of CNS are located, a variety of advanced studies on heavy-ion science are being conducted. CNS has also established itself as an international base for research and training in nuclear science.

Research Center for the Early Universe (RESCEU)

The Research Center for the Early Universe (RESCEU) is conducting research in cosmology and astrophysics, with special emphasis on “understanding the universe through these three epochs, baryons, dark matter, and dark energy.” In addition to theoretical study, RESCEU’s activities include astrophysical observations at optical, sub-millimeter, and X-ray wavelengths. RESCEU also conducts experimental searches for gravitational waves and dark-matter particles, and carries out balloon observations of cosmic anti-particles. These activities are carried out in close collaboration with the Department of Physics, the Department of Astronomy, and the Institute of Astronomy.

Center for Ultrafast Intense Laser Science (CULIS)

The Center for Ultrafast Intense Laser Science is dedicated to exploring through international research cooperation the frontiers in the interdisciplinary research field of Ultrafast Intense Laser Science. It aims to activate research and researcher exchanges as a central organization in the international research network, to train young researchers so that they can play a leading role in the international research community in the future, and to further the training of graduate students in UT’s master’s program in advanced optical science in tandem with the activities of the Consortium on Education and Research on Advanced Laser Science (CORAL) and in cooperation with other universities and private companies.

Molecular Genetics Research Laboratory (MGRL)

The Molecular Genetics Research Laboratory (MGRL) provides advanced research instruments and lab space for University of Tokyo faculty members in order to assist and promote their research. The research groups in MGRL share a common interest in the molecular basis of life and its genetic disorders. Their research aims at understanding how thousands of genes and their encoded proteins serve to bring about the highly coordinated behavior of cells and tissues. The research groups approach this goal from many levels of organization, ranging from individual cells to multicellular systems and the whole organism, from mammals to plants.
University-wide Centers/Institutes

The following Centers and Institutes participate in graduate education in the School.

University-wide Centers

University Museum (UMUT)
- [URL](http://www.um.u-tokyo.ac.jp/index_en.html)

The University Museum of the University of Tokyo (UMUT) is one of the leading university museums in Japan. The museum holds approximately three million specimens, which are used are used for academic research, education for students, and exhibition to the public. The museum has three major divisions devoted to geology, biology, and cultural history respectively, which are further divided into seventeen different departments. In the field of natural sciences, the departments of botany, anthropology, mineralogy, and paleontology have particularly large collections of high scientific value. All exhibitions are free of charge, and special exhibitions are opened twice a year on the first floor of the museum.

Institute for the Physics and Mathematics of the Universe (IPMU)
- [URL](http://www.ipmu.jp/)

IPMU was launched in October 2007 under the World Premier International Research Center Initiative (WPI) program. The primary mission of the institute is to address deep mysteries of the universe by integrating the foremost knowledge of physics and mathematics. IPMU explores dark energy and dark matter of the universe by fully exploiting astronomical observations, high-energy accelerator experiments, and underground experiments, as well as various theoretical approaches in particle theory, cosmology, and mathematics.

International Center for Elementary Particle Physics (ICEPP)
- [URL](http://www.icepp.s.u-tokyo.ac.jp/index-e.html)

ICEPP studies the most fundamental particles and forces of nature using the world’s most advanced particle accelerators.

Center for Spatial Information Science (CSIS)
- [URL](http://www.csis.u-tokyo.ac.jp/english/)

In 2006, CSIS became a national joint-usage/research center to develop, expand, and spread spatial information science and offer greater support for researchers around the country. It promotes joint research in a variety of fields by providing spatial data and services.

Other Related Institutes

<table>
<thead>
<tr>
<th>Institution</th>
<th>URL</th>
<th>Campus Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake Research Institute (ERI)</td>
<td>http://www.eri.u-tokyo.ac.jp/eng/</td>
<td>Hongo</td>
</tr>
<tr>
<td>Institute of Industrial Science (ISS)</td>
<td>http://www.is.u-tokyo.ac.jp/index_e.html</td>
<td>Komaba</td>
</tr>
<tr>
<td>Institute of Molecular and Cellular Biosciences (IMCB)</td>
<td>http://www.iam.u-tokyo.ac.jp/index.html</td>
<td>Hongo</td>
</tr>
<tr>
<td>Institute for Cosmic Ray Research (ICRR)</td>
<td>http://www.icrr.u-tokyo.ac.jp/index_eng.html</td>
<td>Kashiwa</td>
</tr>
<tr>
<td>Institute for Solid State Physics (ISSP)</td>
<td>http://www.issp.u-tokyo.ac.jp/index_en.html</td>
<td>Kashiwa</td>
</tr>
<tr>
<td>Atmosphere and Ocean Research Institute (AORI)</td>
<td>http://www.aori.u-tokyo.ac.jp/index_e.html</td>
<td>Kashiwa</td>
</tr>
<tr>
<td>Research Center for Advanced Science and Technology (RCAST)</td>
<td>http://www.rcast.u-tokyo.ac.jp/en/</td>
<td></td>
</tr>
<tr>
<td>The Institute of Medical Science (IMSUT)</td>
<td>http://www.ims.u-tokyo.ac.jp/imsut/en/</td>
<td></td>
</tr>
</tbody>
</table>
Basic Data

Graduate Enrollment

As of May 1, 2013

<table>
<thead>
<tr>
<th>Department</th>
<th>Master's</th>
<th>PhD</th>
<th>International Research Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>231 (12)</td>
<td>231 (20)</td>
<td>43</td>
</tr>
<tr>
<td>Astronomy</td>
<td>46 (3)</td>
<td>42 (3)</td>
<td>6</td>
</tr>
<tr>
<td>Earth and Planetary Science</td>
<td>162 (3)</td>
<td>118 (4)</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry</td>
<td>135 (12)</td>
<td>90 (11)</td>
<td>24</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>68 (4)</td>
<td>56 (1)</td>
<td>5</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>91 (2)</td>
<td>88 (3)</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>733 (36)</td>
<td>625 (52)</td>
<td>96</td>
</tr>
</tbody>
</table>

Numbers in parentheses are number of international students.

Degrees Conferred by Department

As of May 1, 2013

<table>
<thead>
<tr>
<th>Department</th>
<th>Master's</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>104</td>
<td>49</td>
</tr>
<tr>
<td>Astronomy</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Earth and Planetary Science</td>
<td>79</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry</td>
<td>61</td>
<td>21</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>44</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>339</td>
<td>155 (9)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are numbers of degrees by thesis.

Undergraduate Enrollment

As of May 1, 2013

<table>
<thead>
<tr>
<th>Department</th>
<th>3rd grade</th>
<th>4th grade</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>47 (3)</td>
<td>58 (2)</td>
<td>105 (5)</td>
</tr>
<tr>
<td>Information Science</td>
<td>28</td>
<td>33</td>
<td>61</td>
</tr>
<tr>
<td>Physics</td>
<td>70 (5)</td>
<td>72 (2)</td>
<td>142 (7)</td>
</tr>
<tr>
<td>Astronomy</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Earth and Planetary Physics</td>
<td>30</td>
<td>28 (1)</td>
<td>58 (1)</td>
</tr>
<tr>
<td>Earth and Planetary Environmental Science</td>
<td>21</td>
<td>27</td>
<td>48</td>
</tr>
<tr>
<td>Chemistry</td>
<td>49</td>
<td>49 (3)</td>
<td>98 (3)</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>15 (1)</td>
<td>17</td>
<td>32 (1)</td>
</tr>
<tr>
<td>Biomedical Sciences</td>
<td>25</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>Bioinformatics and System Biology</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>302 (9)</td>
<td>323 (8)</td>
<td>625 (17)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are number of international students.

Academic Staff (Including Foreign Staff)

As of May 1, 2013

<table>
<thead>
<tr>
<th>Category</th>
<th>Professors</th>
<th>Associate professors</th>
<th>Lecturers</th>
<th>Assistant Professor</th>
<th>Research assistants</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Staff</td>
<td>75</td>
<td>49</td>
<td>8</td>
<td>86</td>
<td>1</td>
<td>219</td>
</tr>
</tbody>
</table>

Library and book collection

As of May 1, 2013

<table>
<thead>
<tr>
<th>Department/Facility</th>
<th>Number of books</th>
<th>Titles of periodicals accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>231,287</td>
<td>898</td>
</tr>
</tbody>
</table>
Significant International Programs

UTRIP: The University-of-Tokyo Research Internship Program

UTRIP – An opportunity to experience “real graduate-school life”

http://www.s.u-tokyo.ac.jp/en/utrip/

UTRIP, the University-of-Tokyo Research Internship Program, is an intensive summer research program targeting undergraduate students. Its underlying principles are centered on creating a challenging and rewarding experience for undergraduate students at a higher education institute. During the program, the study at a higher education institute. During the program, the participants receive intensive guidance and hands-on experience on conducting research from the school’s renowned faculty members. Students who are given high evaluation by the faculty members will be given priority for the school’s scholarship. They also have a chance to visit historical sites in Japan and take Japanese language course.

The program has the following features:

a. Participants will be able to:
 i. Raise a research question, and find a scientific problem:
 ii. Apply basic principles and knowledge found in the literature related to the research questions:
 iii. Collect, interpret, and critique data in order to resolve a research question.

b. Participants will have an opportunity to get involved in research at the cutting-edge of natural science.

For prospective students, the program will be an opportunity to clarify their future goals and explore graduate student life at Todai through discussion with graduate students at the school.

ESSVAP: Elite Science Student Visit Abroad Program

The ESSVAP (Elite Science Student Visit Abroad Program) is an overseas dispatching program for promising students who will be active globally in the future. The program had started the “Short Visit Program” back in 1999, and renamed as “Elite Science Student Visit Abroad Program” in 2006. The principle purpose of the program is to send the very best students among Juniors and Seniors to the top universities in the world. The number of program participants amounts to 117 in total.

http://www.s.u-tokyo.ac.jp/en/offices/ilo/essvap/

ESSVAP in 2013:
Application Procedures

A. Master’s/Doctoral Program

The Graduate School of Science offers advanced graduate study in a wide range of scientific fields to international students. The School has already established a system to provide international students with full support in English. In this regard, the School has introduced a special admissions procedure for international students. This procedure enables international students to apply for admission to the School from outside of Japan exempting them from taking a written examination.

http://www.s.u-tokyo.ac.jp/en/admission/graduate.html

<Documents required for application>
1. Application form
2. The GRE Subject or General Test Score*
3. TOEFL Score*
4. Two recommendation letters
5. Original transcripts of all colleges and universities attended
6. Statement of completion of all colleges and universities attended
7. Payment confirmation of the Examination Fee (10,000 yen)
8. Master’s thesis and/or Scientific publications/documents.(In case of applicant for Doctoral program)
9. Any other documents requested by the department.

*GRE and TOEFL test scores are invalid if the tests were taken more than two years before the date of the application. Applicants whose native language is English may in some cases be exempted from submitting a TOEFL score, with the advance approval of the Graduate School of Science. Those who wish to request such an exemption must contact the Graduate School Office prior to the application period.

Please make contact with a potential supervising professor and obtain his or her approval before submitting an application.

Astronomy: http://www.astron.s.u-tokyo.ac.jp/en/graduate/info.html
Chemistry: http://www.chem.s.u-tokyo.ac.jp/en/academic/index.html
Biophysics & Biochemistry: http://www.biochem.s.u-tokyo.ac.jp/school/school_4
Biological Sciences: http://www.biol.s.u-tokyo.ac.jp/english/index.html

B. Graduate International Research Student Program (Non-degree program)

This is a program admitting students to the Graduate School of Science to study a specific subject under the supervision of a professor. Note that no degrees or qualifications are conferred through this program.

http://www.s.u-tokyo.ac.jp/en/admission/research-students.html

C. Special Auditor Program

This program is for students enrolled in an overseas university that has concluded an academic exchange agreement with the University of Tokyo.

http://www.s.u-tokyo.ac.jp/en/admission/special-auditor.html
Scholarships

The University of Tokyo provides international students with access to a number of financial aid options that cover various forms and purposes, including scholarships and school expense exemptions. The following are the scholarships available at the Graduate School of Science.

For detailed information, please check the website.
http://www.s.u-tokyo.ac.jp/en/offices/ilo/scholarship.html
If you have further questions about the scholarships, please contact the International Liaison Office (Email: ilo@adm.s.u-tokyo.ac.jp).

Scholarships for Prospective Students

1) Japanese Government (MEXT) Scholarship
 By University Recommendation (Frontier Science Research Centers + General)
 http://www.s.u-tokyo.ac.jp/en/admission/scholarship.html
 This scholarship is available for applicants who first come to Japan to pursue a Master's/Doctoral degree for the October entrance.
 Monthly Stipend (as of October, 2013)
 144,000 yen (Master's Program), 145,000 yen (Doctoral Program),
 Additional: 3,000 yen/month (for students at the Hongo, Komaba, Mitaka, Shirogane campuses); 2,000 yen/month (for students at the Kashiwa, Wako, Tsukuba campuses)

2) Graduate School of Science Scholarship for International Students
 This scholarship provides a monthly stipend of 150,000 yen to self-supported international students who have demonstrated outstanding academic achievement for a total of five years starting from the enrollment in a Master's degree Program to the end of a three-year Doctoral Program.

3) International Student Special Scholarship Program (The University of Tokyo Fellowship)
 This scholarship provides a monthly stipend of 200,000 yen to self-supported international student who has demonstrated outstanding academic achievement and first come to Japan to pursue a Doctoral degree for the October entrance.

4) JASSO Scholarship
 Eligibility
 Students enrolled in Master's/Doctoral Program as a self-supported international student who has GPA of 2.3/3.0 or above
 Monthly stipend
 65,000 yen

5) The University of Tokyo Assistance Association
 Eligibility
 Students enrolled in Master's/Doctoral Program as a self-supported international student.
 Monthly stipend
 50,000 yen
Access

Tsukuba Express
30 min/ 650 yen
Rail Access from Haneda Airport
To Hongo Campus
To Kashiwa Campus
Haneda
Airport Terminal 1 or 2
Hamamatsu-cho
JR Joban Line
18 min/ 150 yen

To Kashiwa Campus
Todai-mae
JR Yamanote Line
29 min/ 190 yen

To Komaba Campus
Nippori
Keisei Express
“Skyliner”
25 min/ 150 yen

To Kashiwa Campus
Hongo Campus
Narita
Airport Terminal 1 or 2
Keisei
Ueno
To Hongo Campus
Keisei
Express “Skyliner”
41 min/ 2400 yen

Notes:
(1) The Hongo Campus can be reached on foot (15 min.) or by taxi (about 1,000 yen) from Ueno station.
(2) The Hongo Campus can also be reached from the following stations:
Tokyo Metro: Nezu or Yushima (Chiyoda Line) 8 min walk, Todai-mae (Nanboku Line) 5 min walk
Toei Subway: Kasuga (Mita Line) 10 min walk, Hongo Sanchome (Oedo Line) 7 min walk

The University of Tokyo
Prospectus
Graduate School of Science
Published by
Graduate School of Science
The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Email: ilo@adm.s.u-tokyo.ac.jp